Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-900, São Paulo, SP, Brazil.
Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil.
J Exp Bot. 2023 Oct 31;74(20):6349-6368. doi: 10.1093/jxb/erad166.
S-Nitrosoglutathione plays a central role in nitric oxide (NO) homeostasis, and S-nitrosoglutathione reductase (GSNOR) regulates the cellular levels of S-nitrosoglutathione across kingdoms. Here, we investigated the role of endogenous NO in shaping shoot architecture and controlling fruit set and growth in tomato (Solanum lycopersicum). SlGSNOR silencing promoted shoot side branching and led to reduced fruit size, negatively impacting fruit yield. Greatly intensified in slgsnor knockout plants, these phenotypical changes were virtually unaffected by SlGSNOR overexpression. Silencing or knocking out of SlGSNOR intensified protein tyrosine nitration and S-nitrosation and led to aberrant auxin production and signaling in leaf primordia and fruit-setting ovaries, besides restricting the shoot basipetal polar auxin transport stream. SlGSNOR deficiency triggered extensive transcriptional reprogramming at early fruit development, reducing pericarp cell proliferation due to restrictions on auxin, gibberellin, and cytokinin production and signaling. Abnormal chloroplast development and carbon metabolism were also detected in early-developing NO-overaccumulating fruits, possibly limiting energy supply and building blocks for fruit growth. These findings provide new insights into the mechanisms by which endogenous NO fine-tunes the delicate hormonal network controlling shoot architecture, fruit set, and post-anthesis fruit development, emphasizing the relevance of NO-auxin interaction for plant development and productivity.
S-亚硝基谷胱甘肽在一氧化氮(NO)稳态中发挥核心作用,S-亚硝基谷胱甘肽还原酶(GSNOR)调节跨生物界的 S-亚硝基谷胱甘肽的细胞水平。在这里,我们研究了内源性 NO 在塑造番茄(Solanum lycopersicum)的茎结构以及控制结实和果实生长中的作用。SlGSNOR 的沉默促进了侧枝分枝,并导致果实变小,从而降低了果实产量。在 slgsnor 敲除植物中,这些表型变化大大加剧,但 SlGSNOR 的过表达几乎没有影响。SlGSNOR 的沉默或敲除加剧了蛋白质酪氨酸硝化和 S-亚硝基化,并导致叶片原基和结实卵巢中生长素的产生和信号传导异常,此外还限制了茎的向基极性生长素运输流。SlGSNOR 缺乏在早期果实发育时触发广泛的转录重编程,由于对生长素、赤霉素和细胞分裂素的产生和信号传导的限制,导致果皮细胞增殖受限。还在早期积累过量 NO 的果实中检测到异常的叶绿体发育和碳代谢,这可能限制了果实生长的能量供应和构建块。这些发现为内源性 NO 精细调节控制茎结构、结实和授粉后果实发育的微妙激素网络的机制提供了新的见解,强调了 NO-生长素相互作用对植物发育和生产力的重要性。