Suppr超能文献

对各种用于准确预测二元半导体能隙的第一性原理方案的性能进行统计分析。

Statistical analysis of the performance of a variety of first-principles schemes for accurate prediction of binary semiconductor band gaps.

机构信息

Department of Physics, Isfahan University of Technology, Isfahan 84156-83111, Iran.

Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30/1, 121205 Moscow, Russia.

出版信息

J Chem Phys. 2023 May 14;158(18). doi: 10.1063/5.0138775.

Abstract

Standard density functional theory (DFT) approximations tend to strongly underestimate band gaps, while the more accurate GW and hybrid functionals are much more computationally demanding and unsuitable for high-throughput screening. In this work, we have performed an extensive benchmark of several approximations with different computational complexity [G0W0@PBEsol, HSE06, PBEsol, modified Becke-Johnson potential (mBJ), DFT-1/2, and ACBN0] to evaluate and compare their performance in predicting the bandgap of semiconductors. The benchmark is based on 114 binary semiconductors of different compositions and crystal structures, for about half of which experimental band gaps are known. Surprisingly, we find that, compared with G0W0@PBEsol, which exhibits a noticeable underestimation of the band gaps by about 14%, the much computationally cheaper pseudohybrid ACBN0 functional shows a competitive performance in reproducing the experimental data. The mBJ functional also performs well relative to the experiment, even slightly better than G0W0@PBEsol in terms of mean absolute (percentage) error. The HSE06 and DFT-1/2 schemes perform overall worse than ACBN0 and mBJ schemes but much better than PBEsol. Comparing the calculated band gaps on the whole dataset (including the samples with no experimental bandgap), we find that HSE06 and mBJ have excellent agreement with respect to the reference G0W0@PBEsol band gaps. The linear and monotonic correlations between the selected theoretical schemes and experiment are analyzed in terms of the Pearson and Kendall rank coefficients. Our findings strongly suggest the ACBN0 and mBJ methods as very efficient replacements for the costly G0W0 scheme in high-throughput screening of the semiconductor band gaps.

摘要

标准密度泛函理论 (DFT) 近似往往严重低估能带隙,而更准确的 GW 和混合泛函则计算量更大,不适合高通量筛选。在这项工作中,我们对具有不同计算复杂度的几种近似方法进行了广泛的基准测试[G0W0@PBEsol、HSE06、PBEsol、修正 Becke-Johnson 势(mBJ)、DFT-1/2 和 ACBN0],以评估和比较它们在预测半导体能带隙方面的性能。基准测试基于 114 种不同组成和晶体结构的二元半导体,其中大约一半的实验能带隙是已知的。令人惊讶的是,我们发现,与 G0W0@PBEsol 相比,G0W0@PBEsol 明显低估了大约 14%的能带隙,而计算成本低得多的赝杂化 ACBN0 泛函在重现实验数据方面表现出了竞争力。mBJ 泛函与实验结果也非常吻合,在平均绝对(百分比)误差方面甚至略好于 G0W0@PBEsol。HSE06 和 DFT-1/2 方案的总体表现不如 ACBN0 和 mBJ 方案,但比 PBEsol 好得多。在整个数据集(包括没有实验能带隙的样本)上比较计算出的能带隙,我们发现 HSE06 和 mBJ 与参考 G0W0@PBEsol 能带隙具有很好的一致性。根据 Pearson 和 Kendall 秩系数,分析了所选理论方案与实验之间的线性和单调相关性。我们的研究结果强烈表明,ACBN0 和 mBJ 方法非常适合在高通量筛选半导体能带隙中替代昂贵的 G0W0 方案。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验