Suppr超能文献

流体空间限制支架提供了一种具有更高效率和更快动力学的多组分 DNA 反应。

Fluidic Spatial-Confinement Scaffold Affords a Multicomponent DNA Reaction with Improved Efficiency and Accelerated Kinetics.

机构信息

Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, China.

出版信息

Anal Chem. 2023 May 23;95(20):8105-8112. doi: 10.1021/acs.analchem.3c01127. Epub 2023 May 9.

Abstract

Enzyme-free nucleic acid amplification reactions with the capability of signal catalytic amplification have been widely used in biosensors. However, these multicomponent, multistep nucleic acid amplification systems often suffer from low reaction efficiency and kinetics. Herein, inspired by the natural cell membrane system, we utilized the red blood cell membrane as a fluidic spatial-confinement scaffold to construct a novel accelerated reaction platform. By simply modifying with cholesterol, DNA components can be efficiently integrated into the red blood cell membrane through hydrophobic interactions, which greatly increases the local concentration of DNA strands. Moreover, the fluidity of the erythrocyte membrane improves the collision efficiency of DNA components in the amplification system. Based on the increased local concentration and improved collision efficiency, the fluidic spatial-confinement scaffold significantly improved the reaction efficiency and kinetics. Taking catalytic hairpin assembly (CHA) as a model reaction, an RBC-CHA probe based on the erythrocyte membrane platform enables a more sensitive detection of miR-21 with a sensitivity that is 2 orders of magnitude higher than the free CHA probe and a fast reaction rate (about 3.3-fold). The proposed strategy provides a new idea for the construction of a novel spatial-confinement accelerated DNA reaction platform.

摘要

无酶核酸扩增反应具有信号催化扩增的能力,已被广泛应用于生物传感器中。然而,这些多组分、多步骤的核酸扩增系统通常存在反应效率和动力学低的问题。受天然细胞膜系统的启发,本文利用红细胞膜作为流体空间限制支架,构建了一种新型的加速反应平台。通过简单地用胆固醇修饰,DNA 组件可以通过疏水相互作用有效地整合到红细胞膜中,这大大增加了 DNA 链的局部浓度。此外,红细胞膜的流动性提高了扩增系统中 DNA 组件的碰撞效率。基于增加的局部浓度和提高的碰撞效率,流体空间限制支架显著提高了反应效率和动力学。以催化发夹组装(CHA)为模型反应,基于红细胞膜平台的 RBC-CHA 探针能够更灵敏地检测 miR-21,其灵敏度比游离 CHA 探针高 2 个数量级,反应速率也更快(约 3.3 倍)。该策略为构建新型空间限制加速 DNA 反应平台提供了新的思路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验