Suppr超能文献

针对最小化其副作用的靶向 L-天冬酰胺酶递药系统。

L-Asparaginase delivery systems targeted to minimize its side-effects.

机构信息

National University of Singapore, 117546 Singapore, Singapore.

M. Auezov South Kazakhstan University, Shymkent 160012, Kazakhstan.

出版信息

Adv Colloid Interface Sci. 2023 Jun;316:102915. doi: 10.1016/j.cis.2023.102915. Epub 2023 May 3.

Abstract

L-asparaginase (L-ASP) is one of the key enzymes used in therapeutic applications, particularly to treat Acute Lymphocytic Leukemia (ALL). L-asparagine is a non-essential amino acid, which means that it can be synthesized by the body and is not required to be obtained through the diet. The synthesis of L-asparagine occurs primarily in the liver, but it also takes place in other tissues throughout the body. In contrast, leukemic cells cannot synthesize L-asparagine due the absence of L-asparagine synthetase and should obtain it from circulating sources for protein synthesis and cell division processes to ensure their vital functions. L-ASP catalyzes the deamination process of L-asparagine amino-acid into aspartic acid and ammonia, depriving leukemic cells of asparagine. This leads to decreased protein synthesis and cell division in tumor cells. However, using L-ASP has side effects, such as hypersensitivity or allergic reaction, antigenicity, short half-life, temporary blood clearance, and toxicity. L-ASP immobilization can minimize the side effects of L-ASP by stopping the immune system from attacking non-human enzymes and improving the enzyme's performance. The first strategy includes modification of enzyme structure, such as covalent binding (conjugation), adsorption to the support material and cross-linking of the enzyme. The chemical modification of residues, often nonspecific, changes the enzyme's hydrophobicity and surface charge, lowering the enzyme's activity. Also, the first strategy exposes the enzyme's surface to the environment. This eliminates its performance and does not allow targeted delivery of the enzyme. The second strategy is based on the entrapment of the enzyme inside the protecting structure or encapsulation. This strategy offers the same benefits as the first. Still, it also enables reducing toxicity, prolonging in vivo half-life, enhancing stability and activity, enables a targeted delivery and controlled release of the enzyme. Compared to the first strategy, encapsulation does not modify the chemical structure of the enzyme since L-ASP is only effective against leukemia in its native tetrameric form. This review aims to present state of the art in L-ASP formulations developed for reducing the side effects of L-ASP, focusing on describing improvements in their safety. The primary focus in the field remains to be improving the overall performance of the L-ASP formulations. Almost all encapsulation systems allow reducing immune response due to screening the enzyme from antibodies and prolonging its half-life. However, the enzyme's activity and stability depend on the encapsulation system type. Therefore, the selection of the right encapsulation system is crucial in therapy due to its effect on the performance parameters of the L-ASP. Biodegradable and biocompatible materials, such as chitosan, alginate and liposomes, mainly attract the researcher's interest in enzyme encapsulation. The research trends are also moving towards developing formulations with targeted delivery and increased selectivity.

摘要

L-天冬酰胺酶(L-ASP)是治疗应用中使用的关键酶之一,特别是用于治疗急性淋巴细胞白血病(ALL)。L-天冬酰胺是一种非必需氨基酸,这意味着它可以由身体合成,并且不需要从饮食中获得。L-天冬酰胺的合成主要发生在肝脏中,但它也发生在身体的其他组织中。相比之下,由于缺乏 L-天冬酰胺合成酶,白血病细胞无法合成 L-天冬酰胺,并且应该从循环来源中获取 L-天冬酰胺,以确保其蛋白质合成和细胞分裂过程的重要功能。L-ASP 催化 L-天冬酰胺氨基酸的脱氨过程,生成天冬氨酸和氨,使白血病细胞失去天冬酰胺。这导致肿瘤细胞中蛋白质合成和细胞分裂减少。然而,使用 L-ASP 会产生副作用,如过敏或过敏反应、抗原性、半衰期短、暂时血液清除和毒性。L-ASP 固定化可以通过阻止免疫系统攻击非人类酶并提高酶的性能来最小化 L-ASP 的副作用。第一种策略包括修饰酶结构,如共价结合(缀合)、吸附到支撑材料和酶的交联。残基的化学修饰,通常是非特异性的,会改变酶的疏水性和表面电荷,降低酶的活性。此外,第一种策略使酶的表面暴露于环境中。这会消除其性能,并且不允许酶的靶向递送。第二种策略基于将酶包埋在保护结构或封装内。这种策略提供了与第一种策略相同的好处。不过,它还可以降低毒性、延长体内半衰期、增强稳定性和活性、实现酶的靶向递送和控制释放。与第一种策略相比,由于 L-ASP 只有在其天然四聚体形式下才对白血病有效,因此包封不会修饰酶的化学结构。本综述旨在介绍为减少 L-ASP 的副作用而开发的 L-ASP 制剂的最新进展,重点描述其安全性的改善。该领域的主要重点仍然是提高 L-ASP 制剂的整体性能。几乎所有的封装系统都允许由于抗体的屏蔽而减少对酶的免疫反应,并延长其半衰期。然而,酶的活性和稳定性取决于封装系统的类型。因此,由于其对 L-ASP 性能参数的影响,在治疗中选择正确的封装系统至关重要。壳聚糖、海藻酸盐和脂质体等生物可降解和生物相容的材料主要引起研究人员对酶包封的兴趣。研究趋势也朝着开发具有靶向递送和增加选择性的制剂方向发展。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验