Suppr超能文献

通过对基因泰克化合物的回顾性分析,从基于生理学的药代动力学建模策略中获得人类药代动力学预测的共享学习。

Shared learning from a physiologically based pharmacokinetic modeling strategy for human pharmacokinetics prediction through retrospective analysis of Genentech compounds.

机构信息

Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California, USA.

出版信息

Biopharm Drug Dispos. 2023 Aug;44(4):315-334. doi: 10.1002/bdd.2359. Epub 2023 May 9.

Abstract

The quantitative prediction of human pharmacokinetics (PK) including the PK profile and key PK parameters are critical for early drug development decisions, successful phase I clinical trials, and the establishment of a range of doses to enable phase II clinical dose selection. Here, we describe an approach employing physiologically based pharmacokinetic (PBPK) modeling (Simcyp) to predict human PK and to validate its performance through retrospective analysis of 18 Genentech compounds for which clinical data are available. In short, physicochemical parameters and in vitro data for preclinical species were integrated using PBPK modeling to predict the in vivo PK observed in mouse, rat, dog, and cynomolgus monkey. Through this process, the in vitro to in vivo extrapolation (IVIVE) was determined and then incorporated into PBPK modeling in order to predict human PK. Overall, the prediction obtained using this PBPK-IVIVE approach captured the observed human PK profiles of the compounds from the dataset well. The predicted C was within 2-fold of the observed C for 94% of the compounds while the predicted area under the curve (AUC) was within 2-fold of the observed AUC for 72% of the compounds. Additionally, important IVIVE trends were revealed through this investigation, including application of scaling factors determined from preclinical IVIVE to human PK prediction for each molecule. Based upon the analysis, this PBPK-based approach now serves as a practical strategy for human PK prediction at the candidate selection stage at Genentech.

摘要

定量预测人体药代动力学(PK),包括 PK 特征和关键 PK 参数,对于早期药物开发决策、成功的 I 期临床试验以及建立一系列剂量以实现 II 期临床试验剂量选择至关重要。在这里,我们描述了一种使用基于生理学的药代动力学(PBPK)建模(Simcyp)来预测人体 PK 并通过对 18 种具有临床数据的 Genentech 化合物进行回顾性分析来验证其性能的方法。简而言之,使用 PBPK 建模整合了临床前物种的物理化学参数和体外数据,以预测在小鼠、大鼠、狗和食蟹猴中观察到的体内 PK。通过这个过程,确定了体外到体内外推(IVIVE),然后将其纳入 PBPK 建模以预测人体 PK。总体而言,该 PBPK-IVIVE 方法的预测很好地捕捉到了数据集内化合物的观察到的人体 PK 特征。对于 94%的化合物,预测的 C 与观察到的 C 在 2 倍以内,而对于 72%的化合物,预测的 AUC 与观察到的 AUC 在 2 倍以内。此外,通过这项研究揭示了重要的 IVIVE 趋势,包括为每个分子应用从临床前 IVIVE 确定的缩放因子进行人体 PK 预测。基于分析,这种基于 PBPK 的方法现在是 Genentech 在候选选择阶段进行人体 PK 预测的实用策略。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验