Nadeem Muhammad, He Ji-Huan, Sedighi Hamid M
School of Mathematics and Statistics, Qujing Normal University, Qujing 655011, China.
School of Mathematics and Information Science, Henan Polytechnic University, Jiaozuo, China.
Math Biosci Eng. 2023 Feb 27;20(5):8190-8207. doi: 10.3934/mbe.2023356.
This paper presents the Elzaki homotopy perturbation transform scheme (EHPTS) to analyze the approximate solution of the multi-dimensional fractional diffusion equation. The Atangana-Baleanu derivative is considered in the Caputo sense. First, we apply Elzaki transform (ET) to obtain a recurrence relation without any assumption or restrictive variable. Then, this relation becomes very easy to handle for the implementation of the homotopy perturbation scheme (HPS). We observe that HPS produces the iterations in the form of convergence series that approaches the precise solution. We provide the graphical representation in 2D plot distribution and 3D surface solution. The error analysis shows that the solution derived by EHPTS is very close to the exact solution. The obtained series shows that EHPTS is a very simple, straightforward, and efficient tool for other problems of fractional derivatives.
本文提出了埃尔扎基同伦摄动变换方法(EHPTS)来分析多维分数阶扩散方程的近似解。阿坦加纳 - 巴莱亚努导数采用卡普托意义下的定义。首先,我们应用埃尔扎基变换(ET)来获得一个无需任何假设或限制变量的递推关系。然后,对于同伦摄动方法(HPS)的实施而言,这个关系变得非常易于处理。我们观察到HPS产生以收敛级数形式的迭代,该级数趋近于精确解。我们提供了二维图分布和三维表面解的图形表示。误差分析表明,由EHPTS得到的解非常接近精确解。所得到的级数表明,EHPTS对于分数阶导数的其他问题是一个非常简单、直接且有效的工具。