Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781 039, Assam, India.
Biochemistry. 2023 Jun 6;62(11):1643-1658. doi: 10.1021/acs.biochem.3c00006. Epub 2023 May 10.
The absorption and luminescence originating from protein charge transfer spectra (ProCharTS) depend on the proximity between multiple charged groups in a protein. This makes ProCharTS absorbance/luminescence intensity a sensitive probe for detecting changes in the protein structure, which alter the proximity among charged groups in the protein. In this work, ProCharTS absorbance of charge-rich proteins like human serum albumin (HSA), αC, and αW was used to monitor structural changes upon chemical denaturant-induced protein unfolding under equilibrium conditions. The denaturation midpoints were estimated using nonlinear regression analysis. For HSA, absorbance at 325 and 340 nm estimated the GdnHCl-induced denaturation midpoints to be 0.80 and 0.61 M, respectively. A similar analysis of αC and αW ProCharTS absorbance yielded denaturation midpoints of 0.88 and 0.86 M at 325 nm and 0.96 and 0.66 M at 340 nm, respectively. A previously reported molten globule-like state in the GdnHCl-induced HSA unfolding pathway was detected by the increase in HSA ProCharTS absorbance at 0.5 M GdnHCl. To validate the above results, protein unfolding was additionally monitored using conventional methods like circular dichroism (CD), Trp, and dansyl fluorescence. Our results suggest that disruption of charged amino acid sidechain contacts as revealed by ProCharTS occurs at lower denaturant concentrations compared to the loss of secondary/folded structure monitored by CD and fluorescence. Further, HSA ProCharTS absorbance at 315-340 nm revealed that tertiary contacts among charged residues were disrupted at lower GdnHCl concentrations compared to sequence adjacent contacts. Our data underscore the utility of ProCharTS as a novel label-free tool to track unfolding in charge-rich proteins.
蛋白质电荷转移光谱(ProCharTS)的吸收和发光取决于蛋白质中多个带电基团的接近程度。这使得 ProCharTS 吸光度/发光强度成为检测蛋白质结构变化的敏感探针,而蛋白质结构变化会改变带电基团之间的接近程度。在这项工作中,使用富含电荷的蛋白质(如人血清白蛋白(HSA)、αC 和 αW)的 ProCharTS 吸光度来监测化学变性剂诱导的蛋白质在平衡条件下展开时的结构变化。使用非线性回归分析估计变性中点。对于 HSA,在 325nm 和 340nm 处的吸光度分别估计 GdnHCl 诱导的变性中点为 0.80 和 0.61M。对 αC 和 αW ProCharTS 吸光度的类似分析得到 325nm 处的变性中点为 0.88 和 0.86M,340nm 处的变性中点为 0.96 和 0.66M。在 GdnHCl 诱导的 HSA 展开途径中检测到先前报道的类似无规卷曲的状态,这是通过 HSA ProCharTS 在 0.5M GdnHCl 时吸光度的增加而发现的。为了验证上述结果,还使用圆二色性(CD)、色氨酸和丹磺酰荧光等常规方法监测蛋白质展开。我们的结果表明,与 CD 和荧光监测的二级/折叠结构丧失相比,ProCharTS 揭示的带电氨基酸侧链接触的破坏发生在较低的变性剂浓度下。此外,HSA ProCharTS 在 315-340nm 处的吸光度表明,与序列相邻接触相比,带电残基之间的三级接触在较低的 GdnHCl 浓度下被破坏。我们的数据强调了 ProCharTS 作为一种新的无标记工具来跟踪富含电荷的蛋白质展开的实用性。