Department of Neurology, Østfold Hospital Trust, Grålum, Norway.
Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
J Neurol. 2023 Aug;270(8):4049-4059. doi: 10.1007/s00415-023-11680-8. Epub 2023 May 10.
Atrial fibrillation (AF) detection and treatment are key elements to reduce recurrence risk in cryptogenic stroke (CS) with underlying arrhythmia. The purpose of the present study was to assess the predictors of AF in CS and the utility of existing AF-predicting scores in The Nordic Atrial Fibrillation and Stroke (NOR-FIB) Study.
The NOR-FIB study was an international prospective observational multicenter study designed to detect and quantify AF in CS and cryptogenic transient ischaemic attack (TIA) patients monitored by the insertable cardiac monitor (ICM), and to identify AF-predicting biomarkers. The utility of the following AF-predicting scores was tested: AS5F, Brown ESUS-AF, CHADS-VASc, CHASE-LESS, HATCH, HAVOC, STAF and SURF.
In univariate analyses increasing age, hypertension, left ventricle hypertrophy, dyslipidaemia, antiarrhythmic drugs usage, valvular heart disease, and neuroimaging findings of stroke due to intracranial vessel occlusions and previous ischemic lesions were associated with a higher likelihood of detected AF. In multivariate analysis, age was the only independent predictor of AF. All the AF-predicting scores showed significantly higher score levels for AF than non-AF patients. The STAF and the SURF scores provided the highest sensitivity and negative predictive values, while the AS5F and SURF reached an area under the receiver operating curve (AUC) > 0.7.
Clinical risk scores may guide a personalized evaluation approach in CS patients. Increasing awareness of the usage of available AF-predicting scores may optimize the arrhythmia detection pathway in stroke units.
心房颤动(AF)的检测和治疗是降低潜在心律失常的隐源性卒中(CS)复发风险的关键要素。本研究旨在评估 CS 中 AF 的预测因素以及现有 AF 预测评分在北欧房颤和卒中(NOR-FIB)研究中的应用。
NOR-FIB 研究是一项国际前瞻性观察性多中心研究,旨在通过植入式心脏监测器(ICM)检测和量化 CS 和隐源性短暂性脑缺血发作(TIA)患者中的 AF,并确定 AF 预测生物标志物。测试了以下 AF 预测评分的效用:AS5F、Brown ESUS-AF、CHADS-VASc、CHASE-LESS、HATCH、HAVOC、STAF 和 SURF。
在单变量分析中,年龄增长、高血压、左心室肥厚、血脂异常、抗心律失常药物使用、瓣膜性心脏病以及颅内血管阻塞和先前缺血性病变引起的神经影像学发现与更高的 AF 检测可能性相关。在多变量分析中,年龄是 AF 的唯一独立预测因素。所有 AF 预测评分的得分水平均明显高于非 AF 患者。STAF 和 SURF 评分提供了最高的敏感性和阴性预测值,而 AS5F 和 SURF 达到了接受者操作特征曲线(AUC)>0.7。
临床风险评分可能指导 CS 患者的个性化评估方法。提高对现有 AF 预测评分的认识,可能会优化卒中单元的心律失常检测途径。