Suppr超能文献

针对仔猪细菌感染的高选择性共组装肽纳米纤维的设计。

Design of High-Selectivity Co-Assembled Peptide Nanofibers against Bacterial Infection in Piglets.

机构信息

State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.

College of Animal Science, Henan University of Science and Technology, Luoyang 471000, Henan, China.

出版信息

ACS Appl Mater Interfaces. 2023 May 24;15(20):24149-24161. doi: 10.1021/acsami.3c03758. Epub 2023 May 11.

Abstract

Antibiotic resistance is an escalating global health concern that could result in tens of millions of deaths annually from drug-resistant bacterial infections in the future, especially in animal husbandry. Peptide antibacterial nanomaterials offer a competitive alternative to antibiotics because of their distinct mechanism of physically penetrating pathogenic biological membranes. This study developed amphiphilic co-assembled peptide nanofibers with high biological selectivity (PCBP-NCAP NFs) to overcome the high cytotoxicity of peptide PCBP and the low antibacterial activity of peptide NCAP. PCBP-NCAP NFs exhibit broad-spectrum antibacterial activity and excellent biocompatibility, with negligible and toxicity. Additionally, PCBP-NCAP NFs possess direct antibacterial efficacy and potential immunomodulatory capabilities using a piglet systemic infection model. Its unique mechanism of membrane penetration and the ability to bind to anionic components on the surface of pathogenic bacteria make them less susceptible to drug resistance. In conclusion, these findings have significant implications for the advancement of supramolecular peptide nanomedicines for clinical application and animal husbandry.

摘要

抗生素耐药性是一个日益严重的全球健康问题,未来可能会导致每年有数千万人死于耐药细菌感染,尤其是在畜牧业中。由于抗菌肽纳米材料具有独特的物理穿透致病生物膜的机制,因此为抗生素提供了一种有竞争力的替代品。本研究开发了具有高生物选择性的两亲共组装肽纳米纤维(PCBP-NCAP NF),以克服肽 PCBP 的高细胞毒性和肽 NCAP 的低抗菌活性。PCBP-NCAP NF 表现出广谱抗菌活性和优异的生物相容性,毒性可忽略不计。此外,PCBP-NCAP NF 在小猪全身感染模型中具有直接的抗菌功效和潜在的免疫调节能力。其独特的膜穿透机制和与病原菌表面阴离子成分结合的能力,使其不易产生耐药性。总之,这些发现对推进用于临床应用和畜牧业的超分子肽纳米药物具有重要意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验