Suppr超能文献

固态钠纳米电池中的动态电极-电解质混合。

Dynamic Electrode-Electrolyte Intermixing in Solid-State Sodium Nano-Batteries.

机构信息

Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States.

Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742, United States.

出版信息

ACS Appl Mater Interfaces. 2023 May 24;15(20):24271-24283. doi: 10.1021/acsami.2c23256. Epub 2023 May 11.

Abstract

Nanostructured solid-state batteries (SSBs) are poised to meet the demands of next-generation energy storage technologies by realizing performance competitive to their liquid-based counterparts while simultaneously offering improved safety and expanded form factors. Atomic layer deposition (ALD) is among the tools essential to fabricate nanostructured devices with challenging aspect ratios. Here, we report the fabrication and electrochemical testing of the first nanoscale sodium all-solid-state battery (SSB) using ALD to deposit both the VO cathode and NaPON solid electrolyte followed by evaporation of a thin-film Na metal anode. NaPON exhibits remarkable stability against evaporated Na metal, showing no electrolyte breakdown or significant interphase formation in the voltage range of 0.05-6.0 V vs Na/Na. Electrochemical analysis of the SSB suggests intermixing of the NaPON/VO layers during fabrication, which we investigate in three ways: spectroscopic ellipsometry, time-resolved X-ray photoelectron spectroscopy (XPS) depth profiling, and cross-sectional cryo-scanning transmission electron microscopy (cryo-STEM) coupled with electron energy loss spectroscopy (EELS). We characterize the interfacial reaction during the ALD NaPON deposition on VO to be twofold: (1) reduction of VO to VO and (2) Na insertion into VO to form NaVO. Despite the intermixing of NaPON-VO, we demonstrate that NaPON-coated VO electrodes display enhanced electrochemical cycling stability in liquid-electrolyte coin cells through the formation of a stable electrolyte interphase. In all-SSBs, the Na metal evaporation process is found to intensify the intermixing reaction, resulting in the irreversible formation of mixed interphases between discrete battery layers. Despite this graded composition, the SSB can operate for over 100 charge-discharge cycles at room temperature and represents the first demonstration of a functional thin-film solid-state sodium-ion battery.

摘要

纳米结构的固态电池(SSB)有望通过实现与液态电池相媲美的性能来满足下一代储能技术的需求,同时提供更高的安全性和更广泛的外形尺寸。原子层沉积(ALD)是制造具有挑战性纵横比的纳米结构器件的基本工具之一。在这里,我们报告了使用 ALD 制造第一个纳米级钠离子全固态电池(SSB)的制造和电化学测试,该电池使用 ALD 来沉积 VO 阴极和 NaPON 固体电解质,然后蒸发一层薄的 Na 金属阳极。NaPON 表现出对蒸发的 Na 金属的显著稳定性,在 0.05-6.0 V vs Na/Na 的电压范围内没有电解质击穿或明显的相间形成。SSB 的电化学分析表明,在制造过程中 NaPON/VO 层发生了混合,我们通过三种方式进行了研究:光谱椭圆光度法、时间分辨 X 射线光电子能谱(XPS)深度剖析和带有电子能量损失光谱(EELS)的横截面冷冻扫描透射电子显微镜(cryo-STEM)。我们将 ALD NaPON 在 VO 上的沉积过程中的界面反应表征为两种类型:(1)VO 还原为 VO 和(2)Na 插入 VO 形成 NaVO。尽管存在 NaPON-VO 的混合,但我们通过形成稳定的电解质相间,证明了涂覆有 NaPON 的 VO 电极在液体电解质纽扣电池中显示出增强的电化学循环稳定性。在全固态电池中,发现 Na 金属蒸发过程加剧了混合反应,导致离散电池层之间形成不可逆的混合相间。尽管存在这种分级组成,但 SSB 可以在室温下运行超过 100 个充放电循环,代表了第一个功能性的薄膜固态钠离子电池的演示。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验