Suppr超能文献

数据包络分析,用于评估美国国立癌症研究所“登月计划”癌症中心戒烟倡议中烟草治疗项目的效率。

Data envelopment analysis to evaluate the efficiency of tobacco treatment programs in the NCI Moonshot Cancer Center Cessation Initiative.

作者信息

Pluta Kathryn, Hohl Sarah D, D'Angelo Heather, Ostroff Jamie S, Shelley Donna, Asvat Yasmin, Chen Li-Shiun, Cummings K Michael, Dahl Neely, Day Andrew T, Fleisher Linda, Goldstein Adam O, Hayes Rashelle, Hitsman Brian, Buckles Deborah Hudson, King Andrea C, Lam Cho Y, Lenhoff Katie, Levinson Arnold H, Minion Mara, Presant Cary, Prochaska Judith J, Shoenbill Kimberly, Simmons Vani, Taylor Kathryn, Tindle Hilary, Tong Elisa, White Justin S, Wiseman Kara P, Warren Graham W, Baker Timothy B, Rolland Betsy, Fiore Michael C, Salloum Ramzi G

机构信息

Department of Health Outcomes and Biomedical Informatics, University of Florida College of Medicine, 2004 Mowry Rd, Gainesville, FL, 32610, USA.

University of Wisconsin Carbone Cancer Center, 600 Highland Ave, Madison, WI, 53705, USA.

出版信息

Implement Sci Commun. 2023 May 11;4(1):50. doi: 10.1186/s43058-023-00433-3.

Abstract

BACKGROUND

The Cancer Center Cessation Initiative (C3I) is a National Cancer Institute (NCI) Cancer Moonshot Program that supports NCI-designated cancer centers developing tobacco treatment programs for oncology patients who smoke. C3I-funded centers implement evidence-based programs that offer various smoking cessation treatment components (e.g., counseling, Quitline referrals, access to medications). While evaluation of implementation outcomes in C3I is guided by evaluation of reach and effectiveness (via RE-AIM), little is known about technical efficiency-i.e., how inputs (e.g., program costs, staff time) influence implementation outcomes (e.g., reach, effectiveness). This study demonstrates the application of data envelopment analysis (DEA) as an implementation science tool to evaluate technical efficiency of C3I programs and advance prioritization of implementation resources.

METHODS

DEA is a linear programming technique widely used in economics and engineering for assessing relative performance of production units. Using data from 16 C3I-funded centers reported in 2020, we applied input-oriented DEA to model technical efficiency (i.e., proportion of observed outcomes to benchmarked outcomes for given input levels). The primary models used the constant returns-to-scale specification and featured cost-per-participant, total full-time equivalent (FTE) effort, and tobacco treatment specialist effort as model inputs and reach and effectiveness (quit rates) as outcomes.

RESULTS

In the DEA model featuring cost-per-participant (input) and reach/effectiveness (outcomes), average constant returns-to-scale technical efficiency was 25.66 (SD = 24.56). When stratified by program characteristics, technical efficiency was higher among programs in cohort 1 (M = 29.15, SD = 28.65, n = 11) vs. cohort 2 (M = 17.99, SD = 10.16, n = 5), with point-of-care (M = 33.90, SD = 28.63, n = 9) vs. no point-of-care services (M = 15.59, SD = 14.31, n = 7), larger (M = 33.63, SD = 30.38, n = 8) vs. smaller center size (M = 17.70, SD = 15.00, n = 8), and higher (M = 29.65, SD = 30.99, n = 8) vs. lower smoking prevalence (M = 21.67, SD = 17.21, n = 8).

CONCLUSION

Most C3I programs assessed were technically inefficient relative to the most efficient center benchmark and may be improved by optimizing the use of inputs (e.g., cost-per-participant) relative to program outcomes (e.g., reach, effectiveness). This study demonstrates the appropriateness and feasibility of using DEA to evaluate the relative performance of evidence-based programs.

摘要

背景

癌症中心戒烟倡议(C3I)是美国国立癌症研究所(NCI)的一项癌症“登月计划”,旨在支持由NCI指定的癌症中心为吸烟的肿瘤患者制定烟草治疗计划。C3I资助的中心实施基于证据的计划,提供各种戒烟治疗方案(如咨询、戒烟热线转诊、药物获取)。虽然C3I实施成果的评估以覆盖范围和有效性评估(通过RE-AIM)为指导,但对于技术效率(即投入,如项目成本、员工时间,如何影响实施成果,如覆盖范围、有效性)却知之甚少。本研究展示了数据包络分析(DEA)作为一种实施科学工具在评估C3I项目技术效率及推进实施资源优先排序方面的应用。

方法

DEA是一种广泛应用于经济学和工程学的线性规划技术,用于评估生产单位的相对绩效。利用2020年报告的16个C3I资助中心的数据,我们应用面向投入的DEA来模拟技术效率(即给定投入水平下观察到的结果与基准结果的比例)。主要模型采用规模报酬不变的规格,以每位参与者的成本、全职等效人员(FTE)总数和烟草治疗专家的工作量作为模型输入,以覆盖范围和有效性(戒烟率)作为结果。

结果

在以每位参与者的成本(投入)和覆盖范围/有效性(结果)为特征的DEA模型中,平均规模报酬不变技术效率为25.66(标准差 = 24.56)。按项目特征分层时,第1组项目(M = 29.15,标准差 = 28.65,n = 11)的技术效率高于第2组项目(M = 17.99,标准差 = 10.16,n = 5),有即时护理服务的项目(M = 33.90,标准差 = 28.63,n = 9)高于无即时护理服务的项目(M = 15.59,标准差 = 14.31,n = 7),规模较大的中心(M = 33.63,标准差 = 30.38,n = 8)高于规模较小的中心(M = 17.70,标准差 = 15.00,n = 8),吸烟率较高的项目(M = 29.65,标准差 = 30.99,n = 8)高于吸烟率较低的项目(M = 21.67,标准差 = 17.21,n = 8)。

结论

相对于效率最高的中心基准,大多数评估的C3I项目在技术上效率低下,可通过相对于项目成果(如覆盖范围、有效性)优化投入(如每位参与者的成本)的使用来加以改进。本研究证明了使用DEA评估基于证据的项目相对绩效的适用性和可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73d4/10176935/ac96471d11e9/43058_2023_433_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验