Owusu Prempeh Clement, Hartmann Ingo, Formann Steffi, Eiden Manfred, Neubauer Katja, Atia Hanan, Wotzka Alexander, Wohlrab Sebastian, Nelles Michael
Department of Thermochemical Conversion, DBFZ-Deutsches Biomasseforschungszentrum Gemeinnützige GmbH, Torgauer Straße 116, 04347 Leipzig, Germany.
Department of Agriculture and Environmental Science, University of Rostock, Justus-von-Liebig-Weg 6, 18059 Rostock, Germany.
Nanomaterials (Basel). 2023 Apr 24;13(9):1450. doi: 10.3390/nano13091450.
The synthesis and characterization of sol-gel-derived cornhusk support for low-temperature catalytic methane combustion (LTCMC) were investigated in this study. The prepared cornhusk support was impregnated with palladium and cerium oxide (Pd/CeO) via the classical incipient wetness method. The resulting catalyst was characterized using various techniques, including X-ray diffraction (XRD), N physisorption (BET), transmission electron microscopy (TEM), and hydrogen temperature-programmed reduction (H-TPR). The catalytic performance of the Pd/CeO/CHSiO catalyst was evaluated for methane combustion in the temperature range of 150-600 °C using a temperature-controlled catalytic flow reactor, and its performance was compared with a commercial catalyst. The results showed that the Pd/CeO dispersed on SiO from the cornhusk ash support (Pd/CeO/CHSiO) catalyst exhibited excellent catalytic activity for methane combustion, with a conversion of 50% at 394 °C compared with 593 °C for the commercial silica catalyst (Pd/CeO/commercial). Moreover, the Pd/CeO/CHSiO catalyst displayed better catalytic stability after 10 h on stream, with a 7% marginal loss in catalytic activity compared with 11% recorded for the Pd/CeO/commercial catalyst. The N physisorption and H-TPR results indicated that the cornhusk SiO support possessed a higher surface area and strong reducibility than the synthesized commercial catalyst, contributing to the enhanced catalytic activity of the Pd/CeO/SiO catalyst. Overall, the SiO generated from cornhusk ash exhibited promising potential as a low-cost and environmentally friendly support for LTCMC catalysts.
本研究考察了溶胶-凝胶法制备的用于低温催化甲烷燃烧(LTCMC)的玉米皮载体的合成与表征。通过经典的初湿浸渍法将钯和氧化铈(Pd/CeO)负载在制备好的玉米皮载体上。使用多种技术对所得催化剂进行表征,包括X射线衍射(XRD)、N2物理吸附(BET)、透射电子显微镜(TEM)和氢气程序升温还原(H-TPR)。使用温控催化流动反应器在150-600℃温度范围内评估了Pd/CeO/CHSiO催化剂对甲烷燃烧的催化性能,并将其性能与商业催化剂进行了比较。结果表明,负载在玉米皮灰分载体SiO2上的Pd/CeO(Pd/CeO/CHSiO)催化剂对甲烷燃烧表现出优异的催化活性,在394℃时转化率为50%,而商业二氧化硅催化剂(Pd/CeO/商业)在593℃时转化率为50%。此外,Pd/CeO/CHSiO催化剂在连续运行10小时后表现出更好的催化稳定性,催化活性边际损失为7%,而Pd/CeO/商业催化剂记录的损失为11%。N2物理吸附和H-TPR结果表明,玉米皮SiO2载体比合成的商业催化剂具有更高的比表面积和强还原性,有助于提高Pd/CeO/SiO2催化剂的催化活性。总体而言,玉米皮灰分产生的SiO2作为LTCMC催化剂的低成本且环境友好的载体展现出了广阔的潜力。