Zeng Tao, Jin Sijia, Jin Zhiquan, Li Shuqi, Zou Rui, Zhang Xiaole, Song Shuang, Liu Min
College of Architecture and Environment, Sichuan University Sichuan 610065 China
Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology Hangzhou Zhejiang 310032 P. R. China.
RSC Adv. 2023 May 9;13(20):14048-14059. doi: 10.1039/d3ra02364h. eCollection 2023 May 2.
Recently, peroxymonosulfate (PMS)-based advanced oxidation processes (AOPs) are being actively investigated as a potential technology for water decontamination and many efforts have been made to improve the activation efficiency of PMS. Herein, a 0D metal oxide quantum dot (QD)-2D ultrathin g-CN nanosheet (ZnCoO/g-CN) hybrid was facilely fabricated through a one-pot hydrothermal process and used as an efficient PMS activator. Benefiting from the restricted growth effect of the g-CN support, ultrafine ZnCoO QDs (∼3-5 nm) are uniformly and stably anchored onto the surface. The ultrafine ZnCoO possesses high specific surface areas and shortened mass/electron transport route so that the internal static electric field () formed in the interface between p-type ZnCoO and the n-type g-CN semiconductor could speed up the electron transfer during the catalytic reaction. This thereby induces the high-efficiency PMS activation for rapid organic pollutant removal. As expected, the ZnCoO/g-CN hybrid catalysts significantly outperformed individual ZnCoO and g-CN in catalytic oxidative degradation of norfloxacin (NOR) in the presence of PMS (95.3% removal of 20 mg L of NOR in 120 min). Furthermore, the ZnCoO/g-CN-mediated PMS activation system was systematically studied in terms of the identification of reactive radicals, the impact of control factors, and the recyclability of the catalyst. The results of this study demonstrated the great potential of a built-in electric field-driven catalyst as a novel PMS activator for the remediation of contaminated water.
最近,基于过氧单硫酸盐(PMS)的高级氧化工艺(AOPs)作为一种潜在的水净化技术正受到积极研究,并且人们已经做出了许多努力来提高PMS的活化效率。在此,通过一锅水热法轻松制备了一种0D金属氧化物量子点(QD)-2D超薄g-CN纳米片(ZnCoO/g-CN)复合材料,并将其用作高效的PMS活化剂。得益于g-CN载体的限域生长效应,超细的ZnCoO量子点(约3-5纳米)均匀且稳定地锚定在表面上。超细的ZnCoO具有高比表面积和缩短的质量/电子传输路径,因此在p型ZnCoO与n型g-CN半导体之间的界面处形成的内部静电场()可以加速催化反应过程中的电子转移。这进而诱导高效的PMS活化以快速去除有机污染物。正如预期的那样,在PMS存在下,ZnCoO/g-CN复合催化剂在诺氟沙星(NOR)的催化氧化降解方面明显优于单独的ZnCoO和g-CN(120分钟内20 mg/L的NOR去除率为95.3%)。此外,还从活性自由基的鉴定、控制因素的影响以及催化剂的可回收性等方面对ZnCoO/g-CN介导的PMS活化系统进行了系统研究。这项研究的结果证明了内置电场驱动催化剂作为一种新型PMS活化剂用于修复受污染水的巨大潜力。