School of Electronics Engineering VIT-AP University, Andhra Pradesh, 522237, India.
J Neurosci Methods. 2023 Jun 1;393:109879. doi: 10.1016/j.jneumeth.2023.109879. Epub 2023 May 12.
Recently, electroencephalogram (EEG) signals have shown great potential to recognize human emotions. The goal of effective computing is to assist computers in understanding various types of emotions via human-computer interaction (HCI). Multichannel EEG signals are used to measure the electrical activity of the brain in space and time. Automated emotion recognition using multichannel EEG signals is an interesting area of cognitive neuroscience and affective computing research. This research proposes EEG multichannel rhythmic features and ensemble machine learning (EML) classifiers with leave-one-subject-out cross-validation (LOSOCV) for automatic emotion classification from multichannel EEG recordings. Multivariate fast iterative filtering (MvFIF) is used to assess the EEG rhythm sequences. EEG rhythms delta(δ), theta(θ), alpha(α), beta(β), and gamma(γ) are separated based on the mean frequency of the EEG rhythm sequence. Three Hjorth parameters and nine entropy features were extracted from multichannel EEG rhythms. Extracted features are selected using the minimum redundancy maximum relevance (mRMR) approach. The experimental design was performed on two emotional datasets (GAMEEMO and DREAMER). The validation showed that gamma rhythm multichannel features with EML-based subspace K-nearest neighbor (SS KNN) were as high as 93.5%-99.8%, achieving high classification accuracy. The comparisons of δ, θ, α, β, and γ rhythms with EML, support vector machine (SVM), and artificial neural network (ANN) were performed. we also analyzed multi-class emotions (HVHA, HVLA, LVHA, LVLA) with an ensemble-based bagging tree on gamma rhythm. It provides a novel solution for multichannel rhythm-specific features in EEG data analysis.
最近,脑电图(EEG)信号在识别人类情绪方面显示出巨大的潜力。有效的计算目标是通过人机交互(HCI)帮助计算机理解各种类型的情绪。多通道 EEG 信号用于测量大脑在空间和时间上的电活动。使用多通道 EEG 信号进行自动情绪识别是认知神经科学和情感计算研究的一个有趣领域。本研究提出了 EEG 多通道节律特征和集成机器学习(EML)分类器,并结合了Leave-One-Subject-Out 交叉验证(LOSOCV),用于从多通道 EEG 记录中自动进行情绪分类。多变量快速迭代滤波(MvFIF)用于评估 EEG 节律序列。根据 EEG 节律序列的平均频率,将 EEG 节律 delta(δ)、theta(θ)、alpha(α)、beta(β)和 gamma(γ)分开。从多通道 EEG 节律中提取了三个 Hjorth 参数和九个熵特征。使用最小冗余最大相关性(mRMR)方法选择提取的特征。实验设计在两个情绪数据集(GAMEEMO 和 DREAMER)上进行。验证结果表明,基于 gamma 节律的多通道特征与基于 EML 的子空间 K-最近邻(SS KNN)的分类精度高达 93.5%-99.8%。对 delta、theta、alpha、beta 和 gamma 节律与 EML、支持向量机(SVM)和人工神经网络(ANN)的比较进行了分析。我们还对 gamma 节律上的基于集成的装袋树对多类情绪(HVHA、HVLA、LVHA、LVLA)进行了分析。它为 EEG 数据分析中的多通道节律特定特征提供了一种新的解决方案。