Department of Computer Engineering, Middle East Technical University, Ankara, Turkey.
Department of Digital Forensics Engineering, College of Technology, Firat University, Elazig, Turkey.
Comput Biol Med. 2021 Nov;138:104867. doi: 10.1016/j.compbiomed.2021.104867. Epub 2021 Sep 16.
Nowadays, many deep models have been presented to recognize emotions using electroencephalogram (EEG) signals. These deep models are computationally intensive, it takes a longer time to train the model. Also, it is difficult to achieve high classification performance using for emotion classification using machine learning techniques. To overcome these limitations, we present a hand-crafted conventional EEG emotion classification network. In this work, we have used novel prime pattern and tunable q-factor wavelet transform (TQWT) techniques to develop an automated model to classify human emotions. Our proposed cognitive model comprises feature extraction, feature selection, and classification steps. We have used TQWT on the EEG signals to obtain the sub-bands. The prime pattern and statistical feature generator are employed on the generated sub-bands and original signal to generate 798 features. 399 (half of them) out of 798 features are selected using minimum redundancy maximum relevance (mRMR) selector, and misclassification rates of each signal are evaluated using support vector machine (SVM) classifier. The proposed network generated 87 feature vectors hence, this model is named PrimePatNet87. In the last step of the feature generation, the best 20 feature vectors which are selected based on the calculated misclassification rates, are concatenated. The generated feature vector is subjected to the feature selection and the most significant 1000 features are selected using the mRMR selector. These selected features are then classified using an SVM classifier. In the last phase, iterative majority voting has been used to generate a general result. We have used three publicly available datasets, namely DEAP, DREAMER, and GAMEEMO, to develop our proposed model. Our presented PrimePatNet87 model reached over 99% classification accuracy on whole datasets with leave one subject out (LOSO) validation. Our results demonstrate that the developed prime pattern network is accurate and ready for real-world applications.
如今,许多深度学习模型已经被提出,用于使用脑电图(EEG)信号识别情绪。这些深度学习模型计算密集,需要更长的时间来训练模型。此外,使用机器学习技术进行情绪分类很难达到高的分类性能。为了克服这些限制,我们提出了一种手工制作的传统 EEG 情绪分类网络。在这项工作中,我们使用了新颖的主模式和可调 Q 因子小波变换(TQWT)技术来开发一种自动化模型,以对人类情绪进行分类。我们提出的认知模型包括特征提取、特征选择和分类步骤。我们使用 TQWT 对 EEG 信号进行子带获取。在生成的子带和原始信号上使用主模式和统计特征生成器生成 798 个特征。使用最小冗余最大相关性(mRMR)选择器从 798 个特征中选择 399 个(其中一半),并使用支持向量机(SVM)分类器评估每个信号的错误分类率。所提出的网络生成了 87 个特征向量,因此,该模型命名为 PrimePatNet87。在特征生成的最后一步,基于计算的错误分类率选择最佳的 20 个特征向量进行连接。生成的特征向量经过特征选择,使用 mRMR 选择器选择最重要的 1000 个特征。然后使用 SVM 分类器对这些特征进行分类。在最后阶段,使用迭代多数投票来生成一般结果。我们使用了三个公开可用的数据集,即 DEAP、DREAMER 和 GAMEEMO,来开发我们提出的模型。我们提出的 PrimePatNet87 模型在使用受试者保留验证(LOSO)的整个数据集上达到了超过 99%的分类准确率。我们的结果表明,所开发的主模式网络准确,可用于实际应用。