Department of Bioenvironmental Systems Engineering, National Taiwan University, Taiwan.
Department of Bioenvironmental Systems Engineering, National Taiwan University, Taiwan.
Chemosphere. 2023 Sep;334:138872. doi: 10.1016/j.chemosphere.2023.138872. Epub 2023 May 12.
In terrestrial ecosystems, the nitrogen dynamics, including NO production, are majorly regulated by a complex consortium of microbes favored by different substrates and environmental conditions. To better predict the daily, seasonal and annual variation in NO fluxes, it is critical to estimate the temperature sensitivity of different microbial groups for NO fluxes under oxic and suboxic conditions prevalent in soil and wetlands. Here, we studied the temperature sensitivity of two groups of ammonia oxidizers, archaea (AOA) and bacteria (AOB), in relation to NO fluxes through both nitrification and nitrifier-denitrification pathways across a wide temperature gradient (10-55 °C). Using square root theory (SQRT) and macromolecular rate theory (MMRT) models, we estimated thermodynamic parameters and cardinal temperatures, including maximum temperature sensitivity (T). The distinction between NO pathways was facilitated by microbial-specific inhibitors (PTIO and CH) and controlled oxygen supply environments (oxic: ambient level; and suboxic: ∼4%). We found that nitrification supported by AOA (Nt) and AOB (Nt) dominated NO production in an oxic climate, while only AOB-supported nitrifier-denitrification (ND) majorly contributed (>90%) to suboxic NO budget. The models predicted significantly higher optimum temperature (T) and T for Nt and ND compared to Nt. Intriguingly, both Nt and ND exhibited significantly wider temperature ranges than Nt Altogether, our results suggest that temperature and oxygen supply control the dominance of specific AOA- and AOB-supported NO pathways in soil and sediments. This emergent understanding can potentially contribute toward novel targeted NO inhibitors for GHG mitigation under global warming.
在陆地生态系统中,氮动态(包括 NO 生成)主要受微生物的复杂联合体调节,这些微生物受不同基质和环境条件的影响。为了更好地预测 NO 通量的日、季和年变化,估计好氧和缺氧条件下不同微生物组对土壤和湿地中普遍存在的 NO 通量的温度敏感性至关重要。在这里,我们研究了氨氧化菌(AOA 和 AOB)的两个菌群在硝化和硝化-反硝化途径中与 NO 通量的关系,涉及到广泛的温度梯度(10-55°C)。我们使用平方根理论(SQRT)和大分子速率理论(MMRT)模型,估计了热力学参数和关键温度,包括最大温度敏感性(T)。通过微生物特异性抑制剂(PTIO 和 CH)和控制氧气供应环境(好氧:环境水平;和缺氧:约 4%)来区分 NO 途径。我们发现,在好氧条件下,AOA(Nt)和 AOB(Nt)支持的硝化作用主导了 NO 的产生,而只有 AOB 支持的硝化-反硝化(ND)主要(>90%)贡献了缺氧条件下的 NO 预算。模型预测 Nt 和 ND 的最佳温度(T)和 T 显著高于 Nt。有趣的是,Nt 和 ND 的温度范围都明显宽于 Nt。总的来说,我们的研究结果表明,温度和氧气供应控制了特定 AOA 和 AOB 支持的 NO 途径在土壤和沉积物中的主导地位。这种新的认识可能有助于开发针对全球变暖下温室气体减排的新型靶向 NO 抑制剂。