School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China.
School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China.
Small. 2023 Jul;19(28):e2301403. doi: 10.1002/smll.202301403. Epub 2023 May 14.
Developing efficient and stable electrocatalysts for hydrogen evolution reaction (HER) over a wide pH range and industrial large-scale hydrogen production is critical and challenging. Here, a tailoring strategy is developed to fabricate an outstanding HER catalyst in both acidic and alkaline electrolytes containing high-density atomically dispersed Ru sites anchored in the CoP nanoparticles supported on carbon spheres (NC@Ru -CoP). The obtained NC@Ru -CoP catalyst exhibits excellent HER performance with overpotentials of only 15 and 13 mV at 10 mA cm in 1 m KOH and 0.5 m H SO , respectively. The experimental results and theoretical calculations indicate that the strong interaction between the Ru site and the CoP can effectively optimize the electronic structure of Ru sites to reduce the hydrogen binding energy and the water dissociation energy barrier. The constructed alkaline anion exchange membrane water electrolyze (AAEMWE) demonstrates remarkable durability and an industrial-level current density of 1560 mA cm at 1.8 V. This strategy provides a new perspective on the design of Ru-based electrocatalysts with suitable intermediate adsorption strengths and paves the way for the development of highly active electrocatalysts for industrial-scale hydrogen production.
开发在宽 pH 范围内具有高效和稳定的电催化剂对于工业规模的氢气生产至关重要,但具有挑战性。在这里,开发了一种调整策略来制备在含有高密度原子分散 Ru 位点的 CoP 纳米颗粒负载在碳球上的酸性和碱性电解质中都具有出色 HER 性能的催化剂(NC@Ru-CoP)。所获得的 NC@Ru-CoP 催化剂在 1 m KOH 和 0.5 m H2SO4 中,在 10 mA cm-2 的电流密度下的过电势仅为 15 和 13 mV。实验结果和理论计算表明,Ru 位点与 CoP 之间的强相互作用可以有效地优化 Ru 位点的电子结构,从而降低氢结合能和水离解能垒。所构建的碱性阴离子交换膜水电解(AAEMWE)具有出色的耐久性,在 1.8 V 时可以达到 1560 mA cm-2 的工业级电流密度。该策略为具有适当中间吸附强度的 Ru 基电催化剂的设计提供了新的视角,并为开发用于工业规模制氢的高活性电催化剂铺平了道路。