Department of Chemistry, Indian Institute of Technology Tirupati, Yerpedu 517619, Andhra Pradesh, India.
Department of Chemistry and Center for Atomic, Molecular and Optical Sciences & Technologies, Indian Institute of Technology Tirupati, Yerpedu 517619, Andhra Pradesh, India.
J Phys Chem B. 2023 May 25;127(20):4374-4385. doi: 10.1021/acs.jpcb.3c00318. Epub 2023 May 14.
Metal cofactors are critical centers for different biochemical processes of metalloproteins, and often, this metal coordination renders additional structural stability. In this study, we explore the additional stability conferred by the copper ion on azurin by analyzing both the and forms using temperature replica exchange molecular dynamics (REMD) data. We find a 14 K decrease in denaturation temperature for (406 K) azurin relative to that of (420 K), indicating a copper ion-induced additional thermal stability for azurin. The unfolding of azurin begins with the melting of α-helix and β-sheet V, similar to that of form. β-Sheets IV, VII, and VIII are comparatively more stable than other β-strands and melt at higher temperatures. Similar to azurin, the strong hydrophobic interactions among the apolar residues in the protein core is the key factor that renders high stability to protein as well. We construct free energy surfaces at different temperatures to capture the major conformations along the unfolding basins of the protein. Using contact maps from different basins we show the changes in the interaction between different residues along the unfolding pathway. Furthermore, we compare the Cα root-mean-square fluctuations (Cα-RMSF) and B-factor of all residues of and forms to understand the flexibility of different regions. The concerted displacement of α-helix and β-sheets V and VI from the protein core is another distinction we observe for compared to the form, where β-sheet VI was relatively stable.
金属辅因子是金属蛋白不同生化过程的关键中心,通常情况下,这种金属配位赋予蛋白质额外的结构稳定性。在这项研究中,我们通过分析 和 两种形式的温度复制交换分子动力学(REMD)数据,探讨了铜离子赋予天青蛋白的额外稳定性。我们发现 (406 K)天青蛋白的变性温度比 (420 K)降低了 14 K,表明铜离子诱导了 天青蛋白的额外热稳定性。 天青蛋白的展开始于α-螺旋和β-折叠 V 的熔融,与 形式相似。β-折叠 IV、VII 和 VIII 比其他β-链更稳定,在更高的温度下熔融。与 天青蛋白相似,蛋白质核心中无极性残基之间的强疏水相互作用也是赋予 蛋白质高稳定性的关键因素。我们在不同温度下构建自由能表面,以捕获蛋白质展开基态中的主要构象。通过来自不同基态的接触图,我们展示了在展开途径中不同残基之间相互作用的变化。此外,我们比较了 和 形式的所有残基的 Cα均方根波动(Cα-RMSF)和 B 因子,以了解不同区域的柔韧性。与 形式相比,我们观察到 形式中α-螺旋和β-折叠 V 和 VI 从蛋白质核心的协同位移是另一个区别,其中β-折叠 VI 相对稳定。