Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235-1822, United States.
Worldwide Research, Development & Medical, Pfizer, Inc., Lake Forest, Illinois 60045, United States.
Anal Chem. 2023 May 30;95(21):8180-8188. doi: 10.1021/acs.analchem.2c05076. Epub 2023 May 15.
Cyclodextrins (CDs) are a family of macrocyclic oligosaccharides with amphiphilic properties, which can improve the stability, solubility, and bioavailability of therapeutic compounds. There has been growing interest in the advancement of efficient and reliable analytical methods that assist with elucidating CD host-guest drug complexation. In this study, we investigate the noncovalent ion complexes formed between naturally occurring dextrins (αCD, βCD, γCD, and maltohexaose) with the poorly water-soluble antimalarial drug, artemisinin, using a combination of ion mobility-mass spectrometry (IM-MS), tandem MS/MS, and theoretical modeling approaches. This study aims to determine if the drug can complex within the core dextrin cavity forming an inclusion complex or nonspecifically bind to the periphery of the dextrins. We explore the use of group I alkali earth metal additives to promote the formation of various noncovalent gas-phase ion complexes with different drug/dextrin stoichiometries (1:1, 1:2, 1:3, 1:4, and 2:1). Broad IM-MS collision cross section (CCS) mapping ( > 300) and power-law regression analysis were used to confirm the stoichiometric assignments. The 1:1 drug:αCD and drug:βCD complexes exhibited strong preferences for Li+ and Na+ charge carriers, whereas drug:γCD complexes preferred forming adducts with the larger alkali metals, K, Rb, and Cs. Although the ion-measured CCS increased with cation size for the unbound artemisinin and CDs, the 1:1 drug:dextrin complexes exhibit near-identical CCS values regardless of the cation, suggesting these are inclusion complexes. Tandem MS/MS survival yield curves of the [artemisinin:βCD + X] ion (X = H, Li, Na, K) showed a decreased stability of the ion complex with increasing cation size. Empirical CCS measurements of the [artemisinin:βCD + Li] ion correlated with predicted CCS values from the low-energy theoretical structures of the drug incorporated within the βCD cavity, providing further evidence that gas-phase inclusion complexes are formed in these experiments. Taken together, this work demonstrates the utility of combining analytical information from IM-MS, MS/MS, and computational approaches in interpreting the presence of gas-phase inclusion phenomena.
环糊精(CDs)是一类具有两亲性的大环寡糖,可提高治疗化合物的稳定性、溶解度和生物利用度。人们越来越感兴趣的是开发高效可靠的分析方法,以帮助阐明 CD 主体-客体药物络合。在这项研究中,我们使用离子淌度-质谱(IM-MS)、串联 MS/MS 和理论建模方法相结合,研究了天然存在的糊精(αCD、βCD、γCD 和麦芽六糖)与疏水性抗疟药物青蒿素之间形成的非共价离子配合物。本研究旨在确定药物是否可以在核心糊精腔内络合形成包合物,或者非特异性地结合在糊精的外围。我们探索了使用 I 族碱土金属添加剂来促进具有不同药物/糊精化学计量比(1:1、1:2、1:3、1:4 和 2:1)的各种非共价气相离子配合物的形成。广泛的 IM-MS 碰撞截面(CCS)映射(>300)和幂律回归分析用于确认化学计量比的分配。1:1 的药物:αCD 和药物:βCD 配合物对 Li+和 Na+电荷载体表现出强烈的偏好,而药物:γCD 配合物则更喜欢与较大的碱金属 K、Rb 和 Cs 形成加合物。尽管对于未结合的青蒿素和 CDs,离子测量的 CCS 随阳离子尺寸的增加而增加,但 1:1 的药物:糊精配合物的 CCS 值几乎相同,无论阳离子如何,这表明它们是包合物。[青蒿素:βCD+X]离子(X = H、Li、Na、K)的串联 MS/MS 生存产率曲线表明,随着阳离子尺寸的增加,离子配合物的稳定性降低。[青蒿素:βCD+Li]离子的经验 CCS 测量值与从药物结合在βCD 腔内的低能量理论结构预测的 CCS 值相关,进一步证明在这些实验中形成了气相包合物。总之,这项工作证明了结合来自 IM-MS、MS/MS 和计算方法的分析信息来解释气相包合现象存在的有用性。