Cellular Signaling Laboratory, International Research Center for Sensory Biology and Technology of MOST, Key Laboratory of Molecular Biophysics of MOE, and College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France.
Am J Physiol Cell Physiol. 2023 Jul 1;325(1):C79-C89. doi: 10.1152/ajpcell.00150.2022. Epub 2023 May 15.
G protein-coupled receptors (GPCRs) represent the largest family of membrane proteins and are important drug targets. GPCRs are allosteric machines that transduce an extracellular signal to the cell by activating heterotrimeric G proteins. Herein, we summarize the recent advancements in the molecular activation mechanism of the γ-aminobutyric acid type B (GABA) and metabotropic glutamate (mGlu) receptors, the most important class C GPCRs that modulate synaptic transmission in the brain. Both are mandatory dimers, this quaternary structure being needed for their function The structures of these receptors in different conformations and in complexes with G proteins have revealed their asymmetric activation. This asymmetry is further highlighted by the recent discovery of mGlu heterodimers, where the eight mGlu subunits can form specific and functional heterodimers. Finally, the development of allosteric modulators has revealed new possibilities for regulating the function of these receptors by targeting the transmembrane dimer interface. This family of receptors never ceases to astonish and serve as models to better understand the diversity and asymmetric functioning of GPCRs. γ-aminobutyric acid type B (GABA) and metabotropic glutamate (mGlu) receptors form constitutive dimers, which are required for their function. They serve as models to better understand the diversity and activation of G protein-coupled receptors (GPCRs). The structures of these receptors in different conformations and in complexes with G proteins have revealed their asymmetric activation. This asymmetry is further highlighted by the recent discovery of specific and functional mGlu heterodimers. Allosteric modulators can be developed to target the transmembrane interface and modulate the asymmetry.
G 蛋白偶联受体(GPCRs)是最大的膜蛋白家族之一,也是重要的药物靶点。GPCR 是一种变构机器,通过激活异三聚体 G 蛋白将细胞外信号转导至细胞内。本文总结了最近在γ-氨基丁酸 B 型(GABA)和代谢型谷氨酸(mGlu)受体的分子激活机制方面的进展,这两种受体是调节大脑中突触传递的最重要的 C 类 GPCR。它们都是必需的二聚体,这种四级结构是它们发挥功能所必需的。这些受体在不同构象和与 G 蛋白复合物中的结构揭示了它们的不对称激活。最近发现 mGlu 异二聚体进一步突出了这种不对称性,其中 8 个 mGlu 亚基可以形成特定的和功能性的异二聚体。最后,变构调节剂的开发揭示了通过靶向跨膜二聚体界面来调节这些受体功能的新可能性。这个受体家族从未停止过令人惊讶,并作为模型更好地理解 GPCR 的多样性和不对称功能。GABA 和 mGlu 受体形成组成型二聚体,这是它们发挥功能所必需的。它们作为模型更好地理解 GPCR 的多样性和激活。这些受体在不同构象和与 G 蛋白复合物中的结构揭示了它们的不对称激活。最近发现特定和功能性的 mGlu 异二聚体进一步突出了这种不对称性。可以开发变构调节剂来靶向跨膜界面并调节不对称性。