Department of Biological Sciences, University of Illinois Chicago, Chicago, Illinois 60607.
Department of Biological Sciences, University of Illinois Chicago, Chicago, Illinois 60607
J Neurosci. 2023 May 24;43(21):3807-3824. doi: 10.1523/JNEUROSCI.1494-22.2023. Epub 2023 Apr 25.
Sphingosine-1-phosphate (S1P), a bioactive sphingolipid concentrated in the brain, is essential for normal brain functions, such as learning and memory and feeding behaviors. Sphingosine kinase 1 (SphK1), the primary kinase responsible for S1P production in the brain, is abundant within presynaptic terminals, indicating a potential role of the SphK1/S1P axis in presynaptic physiology. Altered S1P levels have been highlighted in many neurologic diseases with endocytic malfunctions. However, it remains unknown whether the SphK1/S1P axis may regulate synaptic vesicle endocytosis in neurons. The present study evaluates potential functions of the SphK1/S1P axis in synaptic vesicle endocytosis by determining effects of a dominant negative catalytically inactive SphK1. Our data for the first time identify a critical role of the SphK1/S1P axis in endocytosis in both neuroendocrine chromaffin cells and neurons from mice of both sexes. Furthermore, our Ca imaging data indicate that the SphK1/S1P axis may be important for presynaptic Ca increases during prolonged stimulations by regulating the Ca permeable TRPC5 channels, which per se regulate synaptic vesicle endocytosis. Collectively, our data point out a critical role of the regulation of TRPC5 by the SphK1/S1P axis in synaptic vesicle endocytosis. Sphingosine kinase 1 (SphK1), the primary kinase responsible for brain sphingosine-1-phosphate (S1P) production, is abundant within presynaptic terminals. Altered SphK1/S1P metabolisms has been highlighted in many neurologic disorders with defective synaptic vesicle endocytosis. However, whether the SphK1/S1P axis may regulate synaptic vesicle endocytosis is unknown. Here, we identify that the SphK1/S1P axis regulates the kinetics of synaptic vesicle endocytosis in neurons, in addition to controlling fission-pore duration during single vesicle endocytosis in neuroendocrine chromaffin cells. The regulation of the SphK1/S1P axis in synaptic vesicle endocytosis is specific since it has a distinguished signaling pathway, which involves regulation of Ca influx via TRPC5 channels. This discovery may provide novel mechanistic implications for the SphK1/S1P axis in brain functions under physiological and pathologic conditions.
鞘氨醇-1-磷酸(S1P)是一种生物活性鞘脂,在大脑中含量丰富,对学习和记忆以及摄食行为等正常大脑功能至关重要。鞘氨醇激酶 1(SphK1)是大脑中产生 S1P 的主要激酶,在突触前末梢中含量丰富,表明 SphK1/S1P 轴在突触前生理学中可能发挥作用。在许多伴有内吞作用障碍的神经疾病中,S1P 水平的改变已被强调。然而,SphK1/S1P 轴是否可能调节神经元中的突触小泡内吞作用仍不清楚。本研究通过确定显性失活的催化无效 SphK1 的作用,评估了 SphK1/S1P 轴在突触小泡内吞作用中的潜在功能。我们的数据首次表明,SphK1/S1P 轴在雄性和雌性小鼠的神经内分泌嗜铬细胞和神经元中的内吞作用中起着关键作用。此外,我们的钙成像数据表明,SphK1/S1P 轴可能通过调节本身调节突触小泡内吞作用的 Ca 通透性 TRPC5 通道,在通过延长刺激引起的突触前 Ca 增加中发挥重要作用。总的来说,我们的数据指出了 SphK1/S1P 轴对 TRPC5 的调节在突触小泡内吞作用中的关键作用。鞘氨醇激酶 1(SphK1)是大脑中产生鞘氨醇-1-磷酸(S1P)的主要激酶,在突触前末梢中含量丰富。许多伴有突触小泡内吞作用缺陷的神经疾病中都强调了 SphK1/S1P 代谢的改变。然而,SphK1/S1P 轴是否可能调节突触小泡内吞作用尚不清楚。在这里,我们确定 SphK1/S1P 轴除了控制单个突触小泡内吞作用中的裂孔持续时间外,还调节神经元中突触小泡内吞作用的动力学。SphK1/S1P 轴在突触小泡内吞作用中的调节是特异性的,因为它具有独特的信号通路,涉及通过 TRPC5 通道调节 Ca 内流。这一发现可能为 SphK1/S1P 轴在生理和病理条件下的大脑功能提供新的机制意义。