Suppr超能文献

人工智能在环境管理研究中的可解释性框架。

AI explainability framework for environmental management research.

机构信息

Department of Civil Engineering, Monash University, Melbourne, VIC, 3800, Australia.

出版信息

J Environ Manage. 2023 Sep 15;342:118149. doi: 10.1016/j.jenvman.2023.118149. Epub 2023 May 13.

Abstract

Deep learning networks powered by AI are essential predictive tools relying on image data availability and processing hardware advancements. However, little attention has been paid to explainable AI (XAI) in application fields, including environmental management. This study develops an explainability framework with a triadic structure to focus on input, AI model and output. The framework provides three main contributions. (1) A context-based augmentation of input data to maximize generalizability and minimize overfitting. (2) A direct monitoring of AI model layers and parameters to use leaner (lighter) networks suitable for edge device deployment, (3) An output explanation procedure focusing on interpretability and robustness of predictive decisions by AI networks. These contributions significantly advance state of the art in XAI for environmental management research, offering implications for improved understanding and utilization of AI networks in this field.

摘要

由人工智能驱动的深度学习网络是重要的预测工具,依赖于图像数据的可用性和处理硬件的进步。然而,在包括环境管理在内的应用领域,人们对可解释人工智能 (XAI) 的关注甚少。本研究开发了一个具有三元结构的可解释性框架,重点关注输入、人工智能模型和输出。该框架提供了三个主要贡献。(1)基于上下文的输入数据增强,以最大限度地提高泛化能力并最小化过拟合。(2)直接监控人工智能模型的层和参数,以使用更精简 (更轻量级) 的网络,适合边缘设备部署,(3)输出解释过程,重点关注人工智能网络预测决策的可解释性和稳健性。这些贡献极大地推动了环境管理研究中 XAI 的发展,为更好地理解和利用人工智能网络在这一领域提供了启示。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验