Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA.
Geisinger Medical Center, Danville, PA, USA.
J Mol Cell Cardiol. 2023 Jul;180:69-83. doi: 10.1016/j.yjmcc.2023.05.002. Epub 2023 May 13.
Congenital long QT syndrome (LQTS) is characterized by a prolonged QT-interval on an electrocardiogram (ECG). An abnormal prolongation in the QT-interval increases the risk for fatal arrhythmias. Genetic variants in several different cardiac ion channel genes, including KCNH2, are known to cause LQTS. Here, we evaluated whether structure-based molecular dynamics (MD) simulations and machine learning (ML) could improve the identification of missense variants in LQTS-linked genes. To do this, we investigated KCNH2 missense variants in the Kv11.1 channel protein shown to have wild type (WT) like or class II (trafficking-deficient) phenotypes in vitro. We focused on KCNH2 missense variants that disrupt normal Kv11.1 channel protein trafficking, as it is the most common phenotype for LQTS-associated variants. Specifically, we used computational techniques to correlate structural and dynamic changes in the Kv11.1 channel protein PAS domain (PASD) with Kv11.1 channel protein trafficking phenotypes. These simulations unveiled several molecular features, including the numbers of hydrating waters and hydrogen bonding pairs, as well as folding free energy scores, that are predictive of trafficking. We then used statistical and machine learning (ML) (Decision tree (DT), Random forest (RF), and Support vector machine (SVM)) techniques to classify variants using these simulation-derived features. Together with bioinformatics data, such as sequence conservation and folding energies, we were able to predict with reasonable accuracy (≈75%) which KCNH2 variants do not traffic normally. We conclude that structure-based simulations of KCNH2 variants localized to the Kv11.1 channel PASD led to an improvement in classification accuracy. Therefore, this approach should be considered to complement the classification of variant of unknown significance (VUS) in the Kv11.1 channel PASD.
先天性长 QT 综合征(LQTS)的特征是心电图(ECG)上的 QT 间期延长。QT 间期的异常延长会增加致命性心律失常的风险。几个不同的心脏离子通道基因,包括 KCNH2,的遗传变异已知会导致 LQTS。在这里,我们评估了基于结构的分子动力学(MD)模拟和机器学习(ML)是否可以提高对与 LQTS 相关基因中的错义变异的识别。为此,我们研究了 Kv11.1 通道蛋白中的 KCNH2 错义变异,这些变异在体外表现出野生型(WT)样或 II 类(运输缺陷)表型。我们专注于破坏正常 Kv11.1 通道蛋白运输的 KCNH2 错义变异,因为这是与 LQTS 相关变异最常见的表型。具体来说,我们使用计算技术将 Kv11.1 通道蛋白 PAS 结构域(PASD)的结构和动态变化与 Kv11.1 通道蛋白运输表型相关联。这些模拟揭示了几个分子特征,包括水合水分子和氢键对的数量,以及折叠自由能评分,这些都是可预测运输的。然后,我们使用统计和机器学习(ML)(决策树(DT)、随机森林(RF)和支持向量机(SVM))技术使用这些模拟衍生的特征对变体进行分类。结合生物信息学数据,如序列保守性和折叠能,我们能够以合理的准确度(≈75%)预测哪些 KCNH2 变体不能正常运输。我们得出的结论是,基于 KCNH2 变体定位到 Kv11.1 通道 PASD 的结构模拟导致分类准确性提高。因此,应该考虑这种方法来补充 Kv11.1 通道 PASD 中未知意义变异(VUS)的分类。