Suppr超能文献

使用标量回归推理的多层快速函数对睡眠期间的血糖水平进行案例研究。

A case study of glucose levels during sleep using multilevel fast function on scalar regression inference.

机构信息

Department of Statistics, Texas A&M University, College Station, Texas, USA.

Department of Biostatistics & Informatics, University of Colorado Anschutz Medical Campus, Colorado, USA.

出版信息

Biometrics. 2023 Dec;79(4):3873-3882. doi: 10.1111/biom.13878. Epub 2023 May 15.

Abstract

Continuous glucose monitors (CGMs) are increasingly used to measure blood glucose levels and provide information about the treatment and management of diabetes. Our motivating study contains CGM data during sleep for 174 study participants with type II diabetes mellitus measured at a 5-min frequency for an average of 10 nights. We aim to quantify the effects of diabetes medications and sleep apnea severity on glucose levels. Statistically, this is an inference question about the association between scalar covariates and functional responses observed at multiple visits (sleep periods). However, many characteristics of the data make analyses difficult, including (1) nonstationary within-period patterns; (2) substantial between-period heterogeneity, non-Gaussianity, and outliers; and (3) large dimensionality due to the number of study participants, sleep periods, and time points. For our analyses, we evaluate and compare two methods: fast univariate inference (FUI) and functional additive mixed models (FAMMs). We extend FUI and introduce a new approach for testing the hypotheses of no effect and time invariance of the covariates. We also highlight areas for further methodological development for FAMM. Our study reveals that (1) biguanide medication and sleep apnea severity significantly affect glucose trajectories during sleep and (2) the estimated effects are time invariant.

摘要

连续血糖监测仪(CGM)越来越多地用于测量血糖水平,并提供有关糖尿病治疗和管理的信息。我们的动机研究包含 174 名 2 型糖尿病患者的睡眠期间的 CGM 数据,以 5 分钟的频率进行测量,平均测量 10 晚。我们旨在量化糖尿病药物和睡眠呼吸暂停严重程度对血糖水平的影响。从统计学上讲,这是一个关于标量协变量与在多次就诊(睡眠期)观察到的功能响应之间关联的推断问题。然而,数据的许多特征使得分析变得困难,包括(1) 期间内的非平稳模式;(2) 期间之间的大量异质性、非正态性和异常值;以及(3) 由于研究参与者、睡眠期和时间点的数量,维度的巨大性。在我们的分析中,我们评估和比较了两种方法:快速单变量推断(FUI)和功能加性混合模型(FAMM)。我们扩展了 FUI 并引入了一种新的方法来检验协变量无效应和时间不变性的假设。我们还强调了 FAMM 进一步方法开发的领域。我们的研究表明:(1)二甲双胍类药物和睡眠呼吸暂停严重程度显著影响睡眠期间的血糖轨迹;(2)估计的影响是时间不变的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验