文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

CRISPR-Cas 系统:当前和新兴的转化前景。

CRISPR-Cas System: The Current and Emerging Translational Landscape.

机构信息

Corporate Research Material Labs, 3M Center, 3M Company, Maplewood, MN 55144, USA.

出版信息

Cells. 2023 Apr 7;12(8):1103. doi: 10.3390/cells12081103.


DOI:10.3390/cells12081103
PMID:37190012
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10136740/
Abstract

CRISPR-Cas technology has rapidly changed life science research and human medicine. The ability to add, remove, or edit human DNA sequences has transformative potential for treating congenital and acquired human diseases. The timely maturation of the cell and gene therapy ecosystem and its seamless integration with CRISPR-Cas technologies has enabled the development of therapies that could potentially cure not only monogenic diseases such as sickle cell anemia and muscular dystrophy, but also complex heterogenous diseases such as cancer and diabetes. Here, we review the current landscape of clinical trials involving the use of various CRISPR-Cas systems as therapeutics for human diseases, discuss challenges, and explore new CRISPR-Cas-based tools such as base editing, prime editing, CRISPR-based transcriptional regulation, CRISPR-based epigenome editing, and RNA editing, each promising new functionality and broadening therapeutic potential. Finally, we discuss how the CRISPR-Cas system is being used to understand the biology of human diseases through the generation of large animal disease models used for preclinical testing of emerging therapeutics.

摘要

CRISPR-Cas 技术迅速改变了生命科学研究和人类医学。添加、删除或编辑人类 DNA 序列的能力为治疗先天性和获得性人类疾病带来了变革性的潜力。细胞和基因治疗生态系统的及时成熟及其与 CRISPR-Cas 技术的无缝集成,使得能够开发出潜在治愈不仅是镰状细胞贫血和肌肉营养不良等单基因疾病,而且还能治愈癌症和糖尿病等复杂异质疾病的疗法。在这里,我们回顾了涉及使用各种 CRISPR-Cas 系统作为人类疾病治疗方法的临床试验的现状,讨论了挑战,并探讨了新的基于 CRISPR-Cas 的工具,如碱基编辑、先导编辑、基于 CRISPR 的转录调控、基于 CRISPR 的表观基因组编辑和 RNA 编辑,每个工具都具有有前景的新功能和更广泛的治疗潜力。最后,我们讨论了 CRISPR-Cas 系统如何通过生成用于新兴疗法临床前测试的大型动物疾病模型来用于了解人类疾病的生物学。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f19d/10136740/a5b83975b947/cells-12-01103-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f19d/10136740/2032babca178/cells-12-01103-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f19d/10136740/871cc8983f1b/cells-12-01103-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f19d/10136740/5c923e7089ea/cells-12-01103-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f19d/10136740/379e49d54f65/cells-12-01103-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f19d/10136740/c6f872432599/cells-12-01103-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f19d/10136740/a5b83975b947/cells-12-01103-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f19d/10136740/2032babca178/cells-12-01103-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f19d/10136740/871cc8983f1b/cells-12-01103-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f19d/10136740/5c923e7089ea/cells-12-01103-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f19d/10136740/379e49d54f65/cells-12-01103-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f19d/10136740/c6f872432599/cells-12-01103-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f19d/10136740/a5b83975b947/cells-12-01103-g006.jpg

相似文献

[1]
CRISPR-Cas System: The Current and Emerging Translational Landscape.

Cells. 2023-4-7

[2]
Advances in CRISPR/Cas-based Gene Therapy in Human Genetic Diseases.

Theranostics. 2020

[3]
Enabling Precision Medicine with CRISPR-Cas Genome Editing Technology: A Translational Perspective.

Adv Exp Med Biol. 2023

[4]
CRISPR and cardiovascular diseases.

Cardiovasc Res. 2023-3-17

[5]
CRISPR technologies for genome, epigenome and transcriptome editing.

Nat Rev Mol Cell Biol. 2024-6

[6]
Recent advances in CRISPR-based genome editing technology and its applications in cardiovascular research.

Mil Med Res. 2023-3-10

[7]
[Multiplex gene editing and regulation techniques based on CRISPR/Cas system].

Sheng Wu Gong Cheng Xue Bao. 2023-6-25

[8]
Lentiviral Vectors for Delivery of Gene-Editing Systems Based on CRISPR/Cas: Current State and Perspectives.

Viruses. 2021-7-1

[9]
CRISPR/Cas mediated epigenome editing for cancer therapy.

Semin Cancer Biol. 2022-8

[10]
[CRISPR/Cas-mediated DNA base editing technology and its application in biomedicine and agriculture].

Sheng Wu Gong Cheng Xue Bao. 2021-9-25

引用本文的文献

[1]
CRISPR/Cas9 in colorectal cancer: Revolutionizing precision oncology through genome editing and targeted therapeutics.

Iran J Basic Med Sci. 2025

[2]
Peptide-enabled ribonucleoprotein delivery for CRISPR engineering (PERC) in primary human immune cells and hematopoietic stem cells.

Nat Protoc. 2025-3-3

[3]
Applications and Prospects of CRISPR/Cas9 Technology in the Breeding of Major Tropical Crops.

Plants (Basel). 2024-12-2

[4]
Insight into the natural regulatory mechanisms and clinical applications of the CRISPR-Cas system.

Heliyon. 2024-10-18

[5]
Point-of-care testing of in using multiply-primed-RCA coupled with CRISPR/Cas12a.

Heliyon. 2024-9-7

[6]
Advances in targeting cancer epigenetics using CRISPR-dCas9 technology: A comprehensive review and future prospects.

Funct Integr Genomics. 2024-9-18

[7]
Neural circuit-selective, multiplexed pharmacological targeting of prefrontal cortex-projecting locus coeruleus neurons drives antinociception.

bioRxiv. 2024-8-28

[8]
Application of CRISPR-Cas9 genome editing technology in various fields: A review.

Narra J. 2023-8

[9]
The Italian breakthrough in CRISPR trials for rare diseases: a focus on beta-thalassemia and sickle cell disease treatment.

Front Med (Lausanne). 2024-2-15

[10]
Sickle Cell Disease Update: New Treatments and Challenging Nutritional Interventions.

Nutrients. 2024-1-15

本文引用的文献

[1]
Efficacy and Safety of an Investigational Single-Course CRISPR Base-Editing Therapy Targeting in Nonhuman Primate and Mouse Models.

Circulation. 2023-1-17

[2]
Phase 1 clinical trial of CRISPR-engineered CAR19 universal T cells for treatment of children with refractory B cell leukemia.

Sci Transl Med. 2022-10-26

[3]
The double life of CRISPR-Cas13.

Curr Opin Biotechnol. 2022-12

[4]
Internal checkpoint regulates T cell neoantigen reactivity and susceptibility to PD1 blockade.

Med. 2022-10-14

[5]
CRISPR-Cas9-mediated gene editing of the BCL11A enhancer for pediatric β/β transfusion-dependent β-thalassemia.

Nat Med. 2022-8

[6]
Repression of HIV-1 reactivation mediated by CRISPR/dCas9-KRAB in lymphoid and myeloid cell models.

Retrovirology. 2022-6-22

[7]
Genetically Modified Porcine-to-Human Cardiac Xenotransplantation.

N Engl J Med. 2022-7-7

[8]
Application of CRISPR/Cas9 System in Establishing Large Animal Models.

Front Cell Dev Biol. 2022-5-17

[9]
Structure and engineering of the type III-E CRISPR-Cas7-11 effector complex.

Cell. 2022-6-23

[10]
Cancer Therapy With TCR-Engineered T Cells: Current Strategies, Challenges, and Prospects.

Front Immunol. 2022

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索