Suppr超能文献

从贝叶斯学习视角看细胞决策

Cell Decision Making through the Lens of Bayesian Learning.

作者信息

Barua Arnab, Hatzikirou Haralampos

机构信息

Departement de Biochimie, Université de Montréal, Montréal, QC H3T 1C5, Canada.

Centre Robert-Cedergren en Bio-Informatique et Génomique, Université de Montréal, Montréal, QC H3C 3J7, Canada.

出版信息

Entropy (Basel). 2023 Apr 3;25(4):609. doi: 10.3390/e25040609.

Abstract

Cell decision making refers to the process by which cells gather information from their local microenvironment and regulate their internal states to create appropriate responses. Microenvironmental cell sensing plays a key role in this process. Our hypothesis is that cell decision-making regulation is dictated by Bayesian learning. In this article, we explore the implications of this hypothesis for internal state temporal evolution. By using a timescale separation between internal and external variables on the mesoscopic scale, we derive a hierarchical Fokker-Planck equation for cell-microenvironment dynamics. By combining this with the Bayesian learning hypothesis, we find that changes in microenvironmental entropy dominate the cell state probability distribution. Finally, we use these ideas to understand how cell sensing impacts cell decision making. Notably, our formalism allows us to understand cell state dynamics even without exact biochemical information about cell sensing processes by considering a few key parameters.

摘要

细胞决策是指细胞从其局部微环境中收集信息并调节其内部状态以做出适当反应的过程。微环境细胞传感在这一过程中起着关键作用。我们的假设是,细胞决策调节由贝叶斯学习决定。在本文中,我们探讨了这一假设对内部状态时间演化的影响。通过在介观尺度上对内部和外部变量进行时间尺度分离,我们推导出了细胞 - 微环境动力学的分层福克 - 普朗克方程。通过将其与贝叶斯学习假设相结合,我们发现微环境熵的变化主导了细胞状态概率分布。最后,我们利用这些观点来理解细胞传感如何影响细胞决策。值得注意的是,我们的形式体系使我们能够通过考虑几个关键参数,即使在没有关于细胞传感过程的确切生化信息的情况下,也能理解细胞状态动力学。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87ca/10137733/b0198d21440b/entropy-25-00609-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验