Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India.
Center for Studies in Physics and Biology, Rockefeller University, New York, New York, USA.
Dev Growth Differ. 2023 Jun;65(5):245-254. doi: 10.1111/dgd.12855. Epub 2023 May 25.
Cell fate decisions emerge as a consequence of a complex set of gene regulatory networks. Models of these networks are known to have more parameters than data can determine. Recent work, inspired by Waddington's metaphor of a landscape, has instead tried to understand the geometry of gene regulatory networks. Here, we describe recent results on the appropriate mathematical framework for constructing these landscapes. This allows the construction of minimally parameterized models consistent with cell behavior. We review existing examples where geometrical models have been used to fit experimental data on cell fate and describe how spatial interactions between cells can be understood geometrically.
细胞命运的决定是一系列复杂的基因调控网络的结果。这些网络的模型被认为具有比数据能够确定的更多的参数。最近的工作受到了 Waddington 的景观隐喻的启发,转而试图理解基因调控网络的几何结构。在这里,我们描述了构建这些景观的适当数学框架的最新结果。这允许构建与细胞行为一致的最小参数化模型。我们回顾了现有的使用几何模型来拟合细胞命运实验数据的例子,并描述了如何从几何角度理解细胞之间的空间相互作用。