文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用重组缺失辅助蛋白的 SARS-CoV-2 进行免疫接种可预防致死性挑战和病毒传播。

Immunization with Recombinant Accessory Protein-Deficient SARS-CoV-2 Protects against Lethal Challenge and Viral Transmission.

机构信息

Disease Intervention and Prevention, and Population Health Programs, Texas Biomedical Research Institute, San Antonio, Texas, USA.

Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.

出版信息

Microbiol Spectr. 2023 Jun 15;11(3):e0065323. doi: 10.1128/spectrum.00653-23. Epub 2023 May 16.


DOI:10.1128/spectrum.00653-23
PMID:37191507
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10269623/
Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to a worldwide coronavirus disease 2019 (COVID-19) pandemic. Despite the high efficacy of the authorized vaccines, there may be uncertain and unknown side effects or disadvantages associated with current vaccination approaches. Live-attenuated vaccines (LAVs) have been shown to elicit robust and long-term protection by the induction of host innate and adaptive immune responses. In this study, we sought to verify an attenuation strategy by generating 3 double open reading frame (ORF)-deficient recombinant SARS-CoV-2s (rSARS-CoV-2s) simultaneously lacking two accessory ORF proteins (ORF3a/ORF6, ORF3a/ORF7a, and ORF3a/ORF7b). We report that these double ORF-deficient rSARS-CoV-2s have slower replication kinetics and reduced fitness in cultured cells compared with their parental wild-type (WT) counterpart. Importantly, these double ORF-deficient rSARS-CoV-2s showed attenuation in both K18 hACE2 transgenic mice and golden Syrian hamsters. A single intranasal dose vaccination induced high levels of neutralizing antibodies against SARS-CoV-2 and some variants of concern and activated viral component-specific T cell responses. Notably, double ORF-deficient rSARS-CoV-2s were able to protect, as determined by the inhibition of viral replication, shedding, and transmission, against challenge with SARS-CoV-2 in both K18 hACE2 mice and golden Syrian hamsters. Collectively, our results demonstrate the feasibility of implementing the double ORF-deficient strategy to develop safe, immunogenic, and protective LAVs to prevent SARS-CoV-2 infection and associated COVID-19. Live-attenuated vaccines (LAVs) are able to induce robust immune responses, including both humoral and cellular immunity, representing a very promising option to provide broad and long-term immunity. To develop LAVs for SARS-CoV-2, we engineered attenuated recombinant SARS-CoV-2 (rSARS-CoV-2) that simultaneously lacks the viral open reading frame 3a (ORF3a) in combination with either ORF6, ORF7a, or ORF7b (Δ3a/Δ6, Δ3a/Δ7a, and Δ3a/Δ7b, respectively) proteins. Among them, the rSARS-CoV-2 Δ3a/Δ7b was completely attenuated and able to provide 100% protection against an otherwise lethal challenge in K18 hACE2 transgenic mice. Moreover, the rSARS-CoV-2 Δ3a/Δ7b conferred protection against viral transmission between golden Syrian hamsters.

摘要

严重急性呼吸综合征冠状病毒 2(SARS-CoV-2)导致了全球 2019 年冠状病毒病(COVID-19)大流行。尽管授权疫苗的功效很高,但目前的疫苗接种方法可能存在不确定和未知的副作用或缺点。减毒活疫苗(LAV)通过诱导宿主先天和适应性免疫反应,已被证明能产生强大和长期的保护作用。在这项研究中,我们试图通过同时缺失两个辅助开放阅读框(ORF)蛋白(ORF3a/ORF6、ORF3a/ORF7a 和 ORF3a/ORF7b)生成 3 种双开放阅读框(ORF)缺失的重组 SARS-CoV-2(rSARS-CoV-2)来验证一种减毒策略。我们报告说,与亲本野生型(WT)相比,这些双 ORF 缺失的 rSARS-CoV-2 在培养细胞中的复制动力学更慢,适应性更低。重要的是,这些双 ORF 缺失的 rSARS-CoV-2 在 K18 hACE2 转基因小鼠和金黄地鼠中均表现出减毒作用。单次鼻腔内接种一剂可诱导针对 SARS-CoV-2 和一些关注变体的高水平中和抗体,并激活病毒成分特异性 T 细胞反应。值得注意的是,双 ORF 缺失的 rSARS-CoV-2 能够通过抑制病毒复制、脱落和传播来保护 K18 hACE2 小鼠和金黄地鼠免受 SARS-CoV-2 的攻击。总的来说,我们的研究结果表明,实施双 ORF 缺失策略来开发安全、免疫原性和保护性的 LAV 以预防 SARS-CoV-2 感染和相关的 COVID-19 是可行的。减毒活疫苗(LAV)能够诱导强大的免疫反应,包括体液免疫和细胞免疫,是提供广泛和长期免疫的非常有前途的选择。为了开发针对 SARS-CoV-2 的 LAV,我们设计了一种减毒重组 SARS-CoV-2(rSARS-CoV-2),该病毒同时缺失病毒开放阅读框 3a(ORF3a),并与 ORF6、ORF7a 或 ORF7b(Δ3a/Δ6、Δ3a/Δ7a 和 Δ3a/Δ7b)蛋白缺失(分别)。其中,rSARS-CoV-2Δ3a/Δ7b 完全减毒,能够在 K18 hACE2 转基因小鼠中提供 100%的致死性攻击保护。此外,rSARS-CoV-2Δ3a/Δ7b 能够防止金黄地鼠之间的病毒传播。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a93/10269623/27ccc302d630/spectrum.00653-23-f006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a93/10269623/0328de0c339a/spectrum.00653-23-f001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a93/10269623/081a2860d147/spectrum.00653-23-f002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a93/10269623/813118241068/spectrum.00653-23-f003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a93/10269623/bff1da91b7f8/spectrum.00653-23-f004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a93/10269623/d432de4fecf0/spectrum.00653-23-f005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a93/10269623/27ccc302d630/spectrum.00653-23-f006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a93/10269623/0328de0c339a/spectrum.00653-23-f001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a93/10269623/081a2860d147/spectrum.00653-23-f002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a93/10269623/813118241068/spectrum.00653-23-f003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a93/10269623/bff1da91b7f8/spectrum.00653-23-f004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a93/10269623/d432de4fecf0/spectrum.00653-23-f005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a93/10269623/27ccc302d630/spectrum.00653-23-f006.jpg

相似文献

[1]
Immunization with Recombinant Accessory Protein-Deficient SARS-CoV-2 Protects against Lethal Challenge and Viral Transmission.

Microbiol Spectr. 2023-6-15

[2]
Immunization with recombinant accessory protein-deficient SARS-CoV-2 protects against lethal challenge and viral transmission.

bioRxiv. 2022-3-14

[3]
Contribution of SARS-CoV-2 Accessory Proteins to Viral Pathogenicity in K18 Human ACE2 Transgenic Mice.

J Virol. 2021-8-10

[4]
Monitoring SARS-CoV-2 Infection Using a Double Reporter-Expressing Virus.

Microbiol Spectr. 2022-10-26

[5]
Examining the feasibility of replacing ORF3a with fluorescent genes to construct SARS-CoV-2 reporter viruses.

J Gen Virol. 2025-2

[6]
A Methyltransferase-Defective Vesicular Stomatitis Virus-Based SARS-CoV-2 Vaccine Candidate Provides Complete Protection against SARS-CoV-2 Infection in Hamsters.

J Virol. 2021-9-27

[7]
The Cold-Adapted, Temperature-Sensitive SARS-CoV-2 Strain TS11 Is Attenuated in Syrian Hamsters and a Candidate Attenuated Vaccine.

Viruses. 2022-12-29

[8]
Mucosal SARS-CoV-2 S1 adenovirus-based vaccine elicits robust systemic and mucosal immunity and protects against disease in animals.

mBio. 2025-1-8

[9]
A single-dose intranasal live-attenuated codon deoptimized vaccine provides broad protection against SARS-CoV-2 and its variants.

Nat Commun. 2024-8-26

[10]
A Bifluorescent-Based Assay for the Identification of Neutralizing Antibodies against SARS-CoV-2 Variants of Concern and .

J Virol. 2021-10-27

引用本文的文献

[1]
Development of the coronavirus reverse genetic system: Core technology for pathogenesis mechanisms research and vaccine/drug development.

Virulence. 2025-12

[2]
Development of viral infectious clones and their applications based on yeast and bacterial artificial chromosome platforms.

Mol Biomed. 2025-4-29

[3]
Effect of Exportin 1/XPO1 Nuclear Export Pathway Inhibition on Coronavirus Replication.

Viruses. 2025-2-18

[4]
Examining the feasibility of replacing ORF3a with fluorescent genes to construct SARS-CoV-2 reporter viruses.

J Gen Virol. 2025-2

[5]
SARS-CoV-2 ORF3a Protein as a Therapeutic Target against COVID-19 and Long-Term Post-Infection Effects.

Pathogens. 2024-1-14

[6]
SARS-CoV-2 omicron BA.5 and XBB variants have increased neurotropic potential over BA.1 in K18-hACE2 mice and human brain organoids.

Front Microbiol. 2023-11-23

[7]
Effect of exportin 1/XPO1 nuclear export pathway inhibition on coronavirus replication.

bioRxiv. 2024-12-11

本文引用的文献

[1]
Live-attenuated vaccine sCPD9 elicits superior mucosal and systemic immunity to SARS-CoV-2 variants in hamsters.

Nat Microbiol. 2023-5

[2]
SARS-CoV-2 accessory proteins ORF7a and ORF3a use distinct mechanisms to down-regulate MHC-I surface expression.

Proc Natl Acad Sci U S A. 2023-1-3

[3]
COVID-19: Clinical status of vaccine development to date.

Br J Clin Pharmacol. 2023-1

[4]
SARS-CoV-2 ORF10 antagonizes STING-dependent interferon activation and autophagy.

J Med Virol. 2022-11

[5]
SARS-CoV-2 ORF10 impairs cilia by enhancing CUL2ZYG11B activity.

J Cell Biol. 2022-7-4

[6]
SARS-CoV-2 accessory proteins reveal distinct serological signatures in children.

Nat Commun. 2022-5-26

[7]
Advanced Materials for SARS-CoV-2 Vaccines.

Adv Mater. 2022-3

[8]
Immune dysregulation and immunopathology induced by SARS-CoV-2 and related coronaviruses - are we our own worst enemy?

Nat Rev Immunol. 2022-1

[9]
The Future of SARS-CoV-2 Vaccination - Lessons from Influenza.

N Engl J Med. 2021-11-11

[10]
Adaptive immune determinants of viral clearance and protection in mouse models of SARS-CoV-2.

Sci Immunol. 2021-10-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索