文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

适应寒冷、温度敏感的 SARS-CoV-2 株 TS11 在叙利亚仓鼠中减毒,是一种候选减毒疫苗。

The Cold-Adapted, Temperature-Sensitive SARS-CoV-2 Strain TS11 Is Attenuated in Syrian Hamsters and a Candidate Attenuated Vaccine.

机构信息

Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA.

Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA.

出版信息

Viruses. 2022 Dec 29;15(1):95. doi: 10.3390/v15010095.


DOI:10.3390/v15010095
PMID:36680135
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9867033/
Abstract

Live attenuated vaccines (LAVs) replicate in the respiratory/oral mucosa, mimic natural infection, and can induce mucosal and systemic immune responses to the full repertoire of SARS-CoV-2 structural/nonstructural proteins. Generally, LAVs produce broader and more durable protection than current COVID-19 vaccines. We generated a temperature-sensitive (TS) SARS-CoV-2 mutant TS11 via cold-adaptation of the WA1 strain in Vero E6 cells. TS11 replicated at >4 Log10-higher titers at 32 °C than at 39 °C. TS11 has multiple mutations, including those in nsp3, a 12-amino acid-deletion spanning the furin cleavage site of the S protein and a 371-nucleotide-deletion spanning the ORF7b-ORF8 genes. We tested the pathogenicity and protective efficacy of TS11 against challenge with a heterologous virulent SARS-CoV-2 D614G strain 14B in Syrian hamsters. Hamsters were randomly assigned to mock immunization-challenge (Mock-C) and TS11 immunization-challenge (TS11-C) groups. Like the mock group, TS11-vaccinated hamsters did not show any clinical signs and continuously gained body weight. TS11 replicated well in the nasal cavity but poorly in the lungs and caused only mild lesions in the lungs. After challenge, hamsters in the Mock-C group lost weight. In contrast, the animals in the TS11-C group continued gaining weight. The virus titers in the nasal turbinates and lungs of the TS11-C group were significantly lower than those in the Mock-C group, confirming the protective effects of TS11 immunization of hamsters. Histopathological examination demonstrated that animals in the Mock-C group had severe pulmonary lesions and large amounts of viral antigens in the lungs post-challenge; however, the TS11-C group had minimal pathological changes and few viral antigen-positive cells. In summary, the TS11 mutant was attenuated and induced protection against disease after a heterologous SARS-CoV-2 challenge in Syrian hamsters.

摘要

减毒活疫苗(LAVs)在呼吸道/口腔黏膜中复制,模拟自然感染,并能诱导针对 SARS-CoV-2 结构/非结构蛋白全谱的黏膜和全身免疫反应。一般来说,LAVs 产生的保护作用比目前的 COVID-19 疫苗更广泛和持久。我们通过在 Vero E6 细胞中对 WA1 株进行冷适应,生成了一种温度敏感(TS)的 SARS-CoV-2 突变株 TS11。TS11 在 32°C 时的复制滴度比 39°C 时高>4Log10。TS11 有多个突变,包括 nsp3 中的突变,该突变跨越 S 蛋白的弗林裂解位点,有 12 个氨基酸缺失,以及跨越 ORF7b-ORF8 基因的 371 个核苷酸缺失。我们测试了 TS11 对异源毒力 SARS-CoV-2 D614G 株 14B 攻击的致病性和保护效力,在叙利亚仓鼠中进行。仓鼠被随机分为模拟免疫-挑战(Mock-C)和 TS11 免疫-挑战(TS11-C)组。与模拟组一样,接种 TS11 的仓鼠没有出现任何临床症状,体重持续增加。TS11 在鼻腔中复制良好,但在肺部中复制不佳,仅引起肺部轻度病变。感染后,Mock-C 组的仓鼠体重减轻。相比之下,TS11-C 组的动物继续增重。TS11-C 组鼻腔鼻甲和肺部的病毒滴度明显低于 Mock-C 组,证实了 TS11 免疫对仓鼠的保护作用。组织病理学检查表明,感染后 Mock-C 组的动物肺部有严重病变,肺部有大量病毒抗原;然而,TS11-C 组的病理变化最小,病毒抗原阳性细胞很少。总之,TS11 突变株在叙利亚仓鼠中对异源 SARS-CoV-2 攻击具有减毒作用,并诱导了疾病保护。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b384/9867033/882e15da8e1a/viruses-15-00095-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b384/9867033/ed189d9b67d4/viruses-15-00095-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b384/9867033/7d9dc70de792/viruses-15-00095-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b384/9867033/6f3059dab43c/viruses-15-00095-g003a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b384/9867033/ae8557940970/viruses-15-00095-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b384/9867033/694c007fb9e6/viruses-15-00095-g005a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b384/9867033/882e15da8e1a/viruses-15-00095-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b384/9867033/ed189d9b67d4/viruses-15-00095-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b384/9867033/7d9dc70de792/viruses-15-00095-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b384/9867033/6f3059dab43c/viruses-15-00095-g003a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b384/9867033/ae8557940970/viruses-15-00095-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b384/9867033/694c007fb9e6/viruses-15-00095-g005a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b384/9867033/882e15da8e1a/viruses-15-00095-g006.jpg

相似文献

[1]
The Cold-Adapted, Temperature-Sensitive SARS-CoV-2 Strain TS11 Is Attenuated in Syrian Hamsters and a Candidate Attenuated Vaccine.

Viruses. 2022-12-29

[2]
Immunization with Recombinant Accessory Protein-Deficient SARS-CoV-2 Protects against Lethal Challenge and Viral Transmission.

Microbiol Spectr. 2023-6-15

[3]
Prototype and BA.5 protein nanoparticle vaccines protect against Omicron BA.5 variant in Syrian hamsters.

J Virol. 2024-3-19

[4]
Cold-adapted SARS-CoV-2 variants with different temperature sensitivity exhibit an attenuated phenotype and confer protective immunity.

Vaccine. 2023-1-23

[5]
A single intranasal dose of a live-attenuated parainfluenza virus-vectored SARS-CoV-2 vaccine is protective in hamsters.

Proc Natl Acad Sci U S A. 2021-12-14

[6]
Scalable live-attenuated SARS-CoV-2 vaccine candidate demonstrates preclinical safety and efficacy.

Proc Natl Acad Sci U S A. 2021-7-20

[7]
Neutralizing Monoclonal Antibodies That Target the Spike Receptor Binding Domain Confer Fc Receptor-Independent Protection against SARS-CoV-2 Infection in Syrian Hamsters.

mBio. 2021-10-26

[8]
Preclinical immunogenicity and efficacy of a candidate COVID-19 vaccine based on a vesicular stomatitis virus-SARS-CoV-2 chimera.

EBioMedicine. 2022-8

[9]
Intranasal administration of cold-adapted live-attenuated SARS-CoV-2 candidate vaccine confers protection against SARS-CoV-2.

Virus Res. 2022-10-2

[10]
Intranasal or airborne transmission-mediated delivery of an attenuated SARS-CoV-2 protects Syrian hamsters against new variants.

Nat Commun. 2023-6-9

引用本文的文献

[1]
Engineering a recombination-resistant live attenuated vaccine candidate with suppressed interferon antagonists for PEDV.

J Virol. 2025-7-22

[2]
SARS-CoV-2 virus lacking the envelope and membrane open-reading frames as a vaccine platform.

Nat Commun. 2025-5-14

[3]
Amino acid substitutions in NSP6 and NSP13 of SARS-CoV-2 contribute to superior virus growth at low temperatures.

J Virol. 2025-3-18

[4]
Rat hepatitis E virus cross-species infection and transmission in pigs.

PNAS Nexus. 2024-7-1

[5]
Features of SARS-CoV-2 Replication in Various Types of Reptilian and Fish Cell Cultures.

Viruses. 2023-11-29

[6]
Immunogenicity and Tolerability of a SARS-CoV-2 TNX-1800, a Live Recombinant Poxvirus Vaccine Candidate, in Syrian Hamsters and New Zealand White Rabbits.

Viruses. 2023-10-21

[7]
Exigency of Plant-Based Vaccine against COVID-19 Emergence as Pandemic Preparedness.

Vaccines (Basel). 2023-8-9

本文引用的文献

[1]
Isolation and characterization of a SARS-CoV-2 variant with a Q677H mutation in the spike protein.

Arch Virol. 2022-12-20

[2]
Neutralizing antibody responses elicited by SARS-CoV-2 mRNA vaccination wane over time and are boosted by breakthrough infection.

Sci Transl Med. 2022-3-23

[3]
SARS-CoV-2 accessory protein ORF8 is secreted extracellularly as a glycoprotein homodimer.

J Biol Chem. 2022-3

[4]
Protection against the Omicron Variant from Previous SARS-CoV-2 Infection.

N Engl J Med. 2022-3-31

[5]
Evaluation of environmental conditions as a decontamination approach for SARS-CoV-2 when applied to common library, archive and museum-related materials.

J Appl Microbiol. 2022-4

[6]
SARS-CoV-2 Omicron virus causes attenuated disease in mice and hamsters.

Nature. 2022-3

[7]
Prior infection with SARS-CoV-2 boosts and broadens Ad26.COV2.S immunogenicity in a variant-dependent manner.

Cell Host Microbe. 2021-11-10

[8]
Challenges of Storage and Stability of mRNA-Based COVID-19 Vaccines.

Vaccines (Basel). 2021-9-17

[9]
Animal Models for COVID-19: Hamsters, Mouse, Ferret, Mink, Tree Shrew, and Non-human Primates.

Front Microbiol. 2021-8-31

[10]
Assignment of epidemiological lineages in an emerging pandemic using the pangolin tool.

Virus Evol. 2021-7-30

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索