Suppr超能文献

来自联合队列数据的生存建模:开启元生存分析和使用电子健康记录进行生存分析之门。

Survival Modelling For Data From Combined Cohorts: Opening the Door to Meta Survival Analyses and Survival Analysis using Electronic Health Records.

作者信息

McVittie James H, Best Ana F, Wolfson David B, Stephens David A, Wolfson Julian, Buckeridge David L, Gadalla Shahinaz M

机构信息

Department of Mathematics and Statistics, McGill University.

Biostatistics Branch, Biometrics Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health.

出版信息

Int Stat Rev. 2023 Apr;91(1):72-87. doi: 10.1111/insr.12510. Epub 2022 Jun 16.

Abstract

Non-parametric estimation of the survival function using observed failure time data depends on the underlying data generating mechanism, including the ways in which the data may be censored and/or truncated. For data arising from a single source or collected from a single cohort, a wide range of estimators have been proposed and compared in the literature. Often, however, it may be possible, and indeed advantageous, to combine and then analyze survival data that have been collected under different study designs. We review non-parametric survival analysis for data obtained by combining the most common types of cohort. We have two main goals: (i) To clarify the differences in the model assumptions, and (ii) to provide a single lens through which some of the proposed estimators may be viewed. Our discussion is relevant to the meta analysis of survival data obtained from different types of study, and to the modern era of electronic health records.

摘要

使用观察到的失效时间数据对生存函数进行非参数估计取决于潜在的数据生成机制,包括数据可能被删失和/或截断的方式。对于来自单一来源或从单个队列收集的数据,文献中已经提出并比较了多种估计方法。然而,通常有可能而且实际上也有优势的是,将在不同研究设计下收集的生存数据进行合并,然后进行分析。我们回顾了通过合并最常见类型的队列所获得数据的非参数生存分析。我们有两个主要目标:(i)阐明模型假设中的差异,以及(ii)提供一个统一的视角,通过它可以审视一些已提出的估计方法。我们的讨论与从不同类型研究中获得的生存数据的荟萃分析以及电子健康记录的现代时代相关。

相似文献

4
A Parametric Survival Model When a Covariate is Subject to Left-Censoring.
J Biom Biostat. 2012;Suppl 3(2). doi: 10.4172/2155-6180.S3-002.
6
The survival function NPMLE for combined right-censored and length-biased right-censored failure time data: properties and applications.
Int J Biostat. 2024 Apr 10;20(2):531-551. doi: 10.1515/ijb-2023-0121. eCollection 2024 Nov 1.
7
Nonparametric estimators of survival function under the mixed case interval-censored model with left truncation.
Lifetime Data Anal. 2020 Jul;26(3):624-637. doi: 10.1007/s10985-020-09493-2. Epub 2020 Jan 13.
8
Analysis of composite endpoints with component-wise censoring in the presence of differential visit schedules.
Stat Med. 2022 Apr 30;41(9):1599-1612. doi: 10.1002/sim.9312. Epub 2022 Jan 18.
10
Regression modeling of restricted mean survival time for left-truncated right-censored data.
Stat Med. 2022 Jul 20;41(16):3003-3021. doi: 10.1002/sim.9399. Epub 2022 Mar 28.

本文引用的文献

2
Analysis of combined incident and prevalent cohort data under a proportional mean residual life model.
Stat Med. 2019 May 30;38(12):2103-2114. doi: 10.1002/sim.8098. Epub 2019 Jan 24.
3
Benefits of combining prevalent and incident cohorts: An application to myotonic dystrophy.
Stat Methods Med Res. 2019 Oct-Nov;28(10-11):3333-3345. doi: 10.1177/0962280218804275. Epub 2018 Oct 8.
5
Estimating treatment effects in observational studies with both prevalent and incident cohorts.
Can J Stat. 2017 Jun;45(2):202-219. doi: 10.1002/cjs.11317. Epub 2017 Apr 13.
6
Mortality risks associated with emergency admissions during weekends and public holidays: an analysis of electronic health records.
Lancet. 2017 Jul 1;390(10089):62-72. doi: 10.1016/S0140-6736(17)30782-1. Epub 2017 May 9.
7
PopHR: a knowledge-based platform to support integration, analysis, and visualization of population health data.
Ann N Y Acad Sci. 2017 Jan;1387(1):44-53. doi: 10.1111/nyas.13271. Epub 2016 Oct 17.
8
Acceleration of Expectation-Maximization algorithm for length-biased right-censored data.
Lifetime Data Anal. 2017 Jan;23(1):102-112. doi: 10.1007/s10985-016-9374-z. Epub 2016 Jul 7.
9
Nonparametric and semiparametric regression estimation for length-biased survival data.
Lifetime Data Anal. 2017 Jan;23(1):3-24. doi: 10.1007/s10985-016-9367-y. Epub 2016 Apr 16.
10
How individual participant data meta-analyses have influenced trial design, conduct, and analysis.
J Clin Epidemiol. 2015 Nov;68(11):1325-35. doi: 10.1016/j.jclinepi.2015.05.024. Epub 2015 Jun 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验