Sattar Abdus, Sinha Sanjoy K, Morris Nathan J
Department of Epidemiology & Biostatistics, Case Western Reserve University, Cleveland, OH, USA.
J Biom Biostat. 2012;Suppl 3(2). doi: 10.4172/2155-6180.S3-002.
Modeling survival data with a set of covariates usually assumes that the values of the covariates are fully observed. However, in a variety of applications, some values of a covariate may be left-censored due to inadequate instrument sensitivity to quantify the biospecimen. When data are left-censored, the true values are missing but are known to be smaller than the detection limit. The most commonly used ad-hoc method to deal with nondetect values is to substitute the nondetect values by the detection limit. Such ad-hoc analysis of survival data with an explanatory variable subject to left-censoring may provide biased and inefficient estimators of hazard ratios and survivor functions.
We consider a parametric proportional hazards model to analyze time-to-event data. We propose a likelihood method for the estimation and inference of model parameters. In this likelihood approach, instead of replacing the nondetect values by the detection limit, we adopt a numerical integration technique to evaluate the observed data likelihood in the presence of a left-censored covariate. Monte Carlo simulations were used to demonstrate various properties of the proposed regression estimators including the consistency and efficiency.
The simulation study shows that the proposed likelihood approach provides approximately unbiased estimators of the model parameters. The proposed method also provides estimators that are more efficient than those obtained under the ad-hoc method. Also, unlike the ad-hoc estimators, the coverage probabilities of the proposed estimators are at their nominal level. Analysis of a large cohort study, genetic and inflammatory marker of sepsis study, shows discernibly different results based on the proposed method.
Naive use of detection limit in a parametric survival model may provide biased and inefficient estimators of hazard ratios and survivor functions. The proposed likelihood approach provides approximately unbiased and efficient estimators of hazard ratios and survivor functions.
使用一组协变量对生存数据进行建模通常假定协变量的值是完全可观测的。然而,在各种应用中,由于仪器对生物样本的量化灵敏度不足,协变量的某些值可能会出现左删失。当数据存在左删失时,真实值缺失,但已知其小于检测限。处理未检出值最常用的临时方法是用检测限替代未检出值的临时方法。对存在左删失的解释变量的生存数据进行这种临时分析可能会提供有偏且低效的风险比和生存函数估计量。
我们考虑使用参数比例风险模型来分析事件发生时间数据。我们提出一种用于估计和推断模型参数的似然方法。在这种似然方法中,我们不使用检测限替代未检出值,而是采用数值积分技术来评估存在左删失协变量时观测数据的似然性。使用蒙特卡罗模拟来展示所提出的回归估计量的各种性质,包括一致性和效率。
模拟研究表明,所提出的似然方法提供了近似无偏的模型参数估计量。所提出的方法还提供了比临时方法得到的估计量更有效的估计量。此外,与临时估计量不同,所提出估计量的覆盖概率处于其名义水平。对一项大型队列研究、脓毒症的遗传和炎症标志物研究的分析表明,基于所提出的方法会得出明显不同的结果。
在参数生存模型中单纯使用检测限可能会提供有偏且低效的风险比和生存函数估计量。所提出的似然方法提供了近似无偏且有效的风险比和生存函数估计量。