Wang Zheyu, Wang Fujun, Wang Chenguang, Zhang Jianliang, Wang Hao, Shi Li, Tang Zhuojun, Rosner Gary L
Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University.
AstraZeneca.
Stat Biopharm Res. 2022;14(4):568-579. doi: 10.1080/19466315.2021.1873843. Epub 2021 Feb 9.
The success of drug development of targeted therapy often hinges on an appropriate selection of the sensitive patient population, mostly based on patients' biomarker levels. At the planning stage of a phase II study, although a potential biomarker may have been identified, a threshold value for defining sensitive patient population is often unavailable for adopting many existing biomarker-guided designs. To address this issue, we propose a two-stage design that allows for simultaneous biomarker threshold selection and efficacy evaluation while accommodating situations where the drug is efficacious in the entire patient population. The design uses a Bayesian decision-theoretic approach and incorporates the benefit and cost considerations of the study into a utility function. The operating characteristics of the proposed design under different scenarios are investigated via simulations. We also provide a discussion on the choice of the benefit and cost parameters in practice.
靶向治疗药物研发的成功通常取决于对敏感患者群体的恰当选择,这主要基于患者的生物标志物水平。在II期研究的规划阶段,尽管可能已识别出潜在的生物标志物,但对于许多现有的生物标志物引导设计而言,定义敏感患者群体的阈值往往不可用。为解决这一问题,我们提出了一种两阶段设计,该设计允许同时进行生物标志物阈值选择和疗效评估,同时兼顾药物在整个患者群体中有效的情况。该设计采用贝叶斯决策理论方法,并将研究的收益和成本考虑纳入效用函数。通过模拟研究了所提出设计在不同场景下的操作特性。我们还对实践中收益和成本参数的选择进行了讨论。