Suppr超能文献

一种基于贝叶斯决策理论的设计,用于同时进行基于生物标志物的亚组选择和疗效评估。

A Bayesian decision-theoretic design for simultaneous biomarker-based subgroup selection and efficacy evaluation.

作者信息

Wang Zheyu, Wang Fujun, Wang Chenguang, Zhang Jianliang, Wang Hao, Shi Li, Tang Zhuojun, Rosner Gary L

机构信息

Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University.

AstraZeneca.

出版信息

Stat Biopharm Res. 2022;14(4):568-579. doi: 10.1080/19466315.2021.1873843. Epub 2021 Feb 9.

Abstract

The success of drug development of targeted therapy often hinges on an appropriate selection of the sensitive patient population, mostly based on patients' biomarker levels. At the planning stage of a phase II study, although a potential biomarker may have been identified, a threshold value for defining sensitive patient population is often unavailable for adopting many existing biomarker-guided designs. To address this issue, we propose a two-stage design that allows for simultaneous biomarker threshold selection and efficacy evaluation while accommodating situations where the drug is efficacious in the entire patient population. The design uses a Bayesian decision-theoretic approach and incorporates the benefit and cost considerations of the study into a utility function. The operating characteristics of the proposed design under different scenarios are investigated via simulations. We also provide a discussion on the choice of the benefit and cost parameters in practice.

摘要

靶向治疗药物研发的成功通常取决于对敏感患者群体的恰当选择,这主要基于患者的生物标志物水平。在II期研究的规划阶段,尽管可能已识别出潜在的生物标志物,但对于许多现有的生物标志物引导设计而言,定义敏感患者群体的阈值往往不可用。为解决这一问题,我们提出了一种两阶段设计,该设计允许同时进行生物标志物阈值选择和疗效评估,同时兼顾药物在整个患者群体中有效的情况。该设计采用贝叶斯决策理论方法,并将研究的收益和成本考虑纳入效用函数。通过模拟研究了所提出设计在不同场景下的操作特性。我们还对实践中收益和成本参数的选择进行了讨论。

相似文献

1
A Bayesian decision-theoretic design for simultaneous biomarker-based subgroup selection and efficacy evaluation.
Stat Biopharm Res. 2022;14(4):568-579. doi: 10.1080/19466315.2021.1873843. Epub 2021 Feb 9.
2
Bayesian Two-stage Biomarker-based Adaptive Design for Targeted Therapy Development.
Stat Biosci. 2016 Jun;8(1):99-128. doi: 10.1007/s12561-014-9124-2. Epub 2014 Dec 4.
3
Biomarker-based Bayesian randomized phase II clinical trial design to identify a sensitive patient subpopulation.
Stat Med. 2014 Oct 15;33(23):4008-16. doi: 10.1002/sim.6209. Epub 2014 May 13.
4
IBIS: identify biomarker-based subgroups with a Bayesian enrichment design for targeted combination therapy.
BMC Med Res Methodol. 2023 Mar 20;23(1):66. doi: 10.1186/s12874-023-01877-w.
5
Phase III Precision Medicine Clinical Trial Designs That Integrate Treatment and Biomarker Evaluation.
JCO Precis Oncol. 2019 Oct 24;3. doi: 10.1200/PO.18.00416. eCollection 2019.
7
An adaptive biomarker basket design in phase II oncology trials.
Pharm Stat. 2023 Jan;22(1):128-142. doi: 10.1002/pst.2264. Epub 2022 Sep 26.
8
Implementing a decision-theoretic design in clinical trials: why and how?
Stat Med. 2007 Nov 30;26(27):4939-57. doi: 10.1002/sim.2949.
10
Bayesian Approaches to Subgroup Analysis and Related Adaptive Clinical Trial Designs.
JCO Precis Oncol. 2019 Oct 24;3. doi: 10.1200/PO.19.00003. eCollection 2019.

本文引用的文献

1
Bayesian Approaches to Subgroup Analysis and Related Adaptive Clinical Trial Designs.
JCO Precis Oncol. 2019 Oct 24;3. doi: 10.1200/PO.19.00003. eCollection 2019.
2
Optimized adaptive enrichment designs.
Stat Methods Med Res. 2019 Jul;28(7):2096-2111. doi: 10.1177/0962280217747312. Epub 2017 Dec 18.
4
Bayesian population finding with biomarkers in a randomized clinical trial.
Biometrics. 2017 Dec;73(4):1355-1365. doi: 10.1111/biom.12677. Epub 2017 Mar 3.
5
A Bayesian credible subgroups approach to identifying patient subgroups with positive treatment effects.
Biometrics. 2016 Dec;72(4):1026-1036. doi: 10.1111/biom.12522. Epub 2016 May 9.
6
Biomarker-Guided Adaptive Trial Designs in Phase II and Phase III: A Methodological Review.
PLoS One. 2016 Feb 24;11(2):e0149803. doi: 10.1371/journal.pone.0149803. eCollection 2016.
7
Methods for identification and confirmation of targeted subgroups in clinical trials: A systematic review.
J Biopharm Stat. 2016;26(1):99-119. doi: 10.1080/10543406.2015.1092034.
8
Estimation after subpopulation selection in adaptive seamless trials.
Stat Med. 2015 Aug 15;34(18):2581-601. doi: 10.1002/sim.6506. Epub 2015 Apr 22.
9
Biomarker based clinical trial design.
Chin Clin Oncol. 2014 Sep;3(3):39. doi: 10.3978/j.issn.2304-3865.2014.02.03.
10
Adaptive designs for subpopulation analysis optimizing utility functions.
Biom J. 2015 Jan;57(1):76-89. doi: 10.1002/bimj.201300257. Epub 2014 Nov 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验