Suppr超能文献

用于靶向治疗开发的基于贝叶斯两阶段生物标志物的适应性设计

Bayesian Two-stage Biomarker-based Adaptive Design for Targeted Therapy Development.

作者信息

Gu Xuemin, Chen Nan, Wei Caimiao, Liu Suyu, Papadimitrakopoulou Vassiliki A, Herbst Roy S, Lee J Jack

机构信息

Department of Biostatistics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA.

Department of Thoracic, Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, USA.

出版信息

Stat Biosci. 2016 Jun;8(1):99-128. doi: 10.1007/s12561-014-9124-2. Epub 2014 Dec 4.

Abstract

We propose a Bayesian two-stage biomarker-based adaptive randomization (AR) design for the development of targeted agents. The design has three main goals: (1) to test the treatment efficacy, (2) to identify prognostic and predictive markers for the targeted agents, and (3) to provide better treatment for patients enrolled in the trial. To treat patients better, both stages are guided by the Bayesian AR based on the individual patient's biomarker profiles. The AR in the first stage is based on a known marker. A Go/No-Go decision can be made in the first stage by testing the overall treatment effects. If a Go decision is made at the end of the first stage, a two-step Bayesian lasso strategy will be implemented to select additional prognostic or predictive biomarkers to refine the AR in the second stage. We use simulations to demonstrate the good operating characteristics of the design, including the control of per-comparison type I and type II errors, high probability in selecting important markers, and treating more patients with more effective treatments. Bayesian adaptive designs allow for continuous learning. The designs are particularly suitable for the development of multiple targeted agents in the quest of personalized medicine. By estimating treatment effects and identifying relevant biomarkers, the information acquired from the interim data can be used to guide the choice of treatment for each individual patient enrolled in the trial in real time to achieve a better outcome. The design is being implemented in the BATTLE-2 trial in lung cancer at the MD Anderson Cancer Center.

摘要

我们提出了一种基于贝叶斯两阶段生物标志物的适应性随机化(AR)设计,用于靶向药物的研发。该设计有三个主要目标:(1)测试治疗效果;(2)识别靶向药物的预后和预测标志物;(3)为参与试验的患者提供更好的治疗。为了更好地治疗患者,两个阶段均由基于个体患者生物标志物特征的贝叶斯AR引导。第一阶段的AR基于已知标志物。通过测试总体治疗效果,可以在第一阶段做出继续/停止的决策。如果在第一阶段结束时做出继续的决策,将实施两步贝叶斯套索策略,以选择额外的预后或预测生物标志物,从而在第二阶段优化AR。我们通过模拟来证明该设计良好的操作特性,包括控制每次比较的I型和II型错误、选择重要标志物的高概率,以及用更有效的治疗方法治疗更多患者。贝叶斯适应性设计允许持续学习。这些设计特别适合于在追求个性化医疗的过程中开发多种靶向药物。通过估计治疗效果并识别相关生物标志物,从期中数据获得的信息可用于实时指导参与试验的每个个体患者的治疗选择,以实现更好的结果。该设计正在MD安德森癌症中心的肺癌BATTLE-2试验中实施。

相似文献

引用本文的文献

本文引用的文献

1
Worth adapting? Revisiting the usefulness of outcome-adaptive randomization.值得改编吗?重新审视结果适应性随机化的有用性。
Clin Cancer Res. 2012 Sep 1;18(17):4498-507. doi: 10.1158/1078-0432.CCR-11-2555. Epub 2012 Jul 2.
2
Bayesian clinical trials in action.贝叶斯临床试验实践。
Stat Med. 2012 Nov 10;31(25):2955-72. doi: 10.1002/sim.5404. Epub 2012 Jun 18.
3
The BATTLE trial: personalizing therapy for lung cancer.BATTLE 试验:为肺癌患者实施个体化治疗。
Cancer Discov. 2011 Jun;1(1):44-53. doi: 10.1158/2159-8274.CD-10-0010. Epub 2011 Jun 1.
5
7
Drug development: portals of discovery.药物研发:探索的门户。
Clin Cancer Res. 2012 Jan 1;18(1):23-32. doi: 10.1158/1078-0432.CCR-11-1001.
8
Drug approvals 2011: focus on companion diagnostics.2011年药物批准情况:聚焦伴随诊断
J Natl Cancer Inst. 2012 Jan 18;104(2):84-6. doi: 10.1093/jnci/djr552. Epub 2012 Jan 3.
10
Adaptive clinical trials in oncology.肿瘤学中的适应性临床试验。
Nat Rev Clin Oncol. 2011 Nov 8;9(4):199-207. doi: 10.1038/nrclinonc.2011.165.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验