Elser Michael J, Neige Ellie, Berger Thomas, Chiesa Mario, Giamello Elio, McKenna Keith, Risse Thomas, Diwald Oliver
Institute of Particle Technology (LFG), Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 4, Erlangen 91058, Germany.
Department of Chemistry and Physics of Materials, Paris-Lodron Universität Salzburg, Jakob-Haringerstrasse 2a, Salzburg 5020, Austria.
J Phys Chem C Nanomater Interfaces. 2023 May 3;127(18):8778-8787. doi: 10.1021/acs.jpcc.3c00430. eCollection 2023 May 11.
Particle attachment and neck formation inside TiO nanoparticle networks determine materials performance in sensing, photo-electrochemistry, and catalysis. Nanoparticle necks can feature point defects with potential impact on the separation and recombination of photogenerated charges. Here, we investigated with electron paramagnetic resonance a point defect that traps electrons and predominantly forms in aggregated TiO nanoparticle systems. The associated paramagnetic center resonates in the factor range between = 2.0018 and 2.0028. Structure characterization and electron paramagnetic resonance data suggest that during materials processing, the paramagnetic electron center accumulates in the region of nanoparticle necks, where O adsorption and condensation can occur at cryogenic temperatures. Complementary density functional theory calculations reveal that residual carbon atoms, which potentially originate from synthesis, can substitute oxygen ions in the anionic sublattice, where they trap one or two electrons that mainly localize at the carbon. Their emergence upon particle neck formation is explained by the synthesis- and/or processing-induced particle attachment and aggregation facilitating carbon atom incorporation into the lattice. This study represents a substantial advance in linking dopants, point defects, and their spectroscopic fingerprints to microstructural features of oxide nanomaterials.
TiO纳米颗粒网络内部的颗粒附着和颈部形成决定了材料在传感、光电化学和催化方面的性能。纳米颗粒颈部可能存在点缺陷,对光生电荷的分离和复合有潜在影响。在此,我们利用电子顺磁共振研究了一种捕获电子且主要在聚集的TiO纳米颗粒系统中形成的点缺陷。相关的顺磁中心在g因子范围2.0018至2.0028之间产生共振。结构表征和电子顺磁共振数据表明,在材料加工过程中,顺磁电子中心在纳米颗粒颈部区域积累,在低温下可能发生O吸附和凝聚。互补的密度泛函理论计算表明,可能源于合成过程的残余碳原子可以替代阴离子亚晶格中的氧离子,在那里它们捕获一个或两个主要定域在碳上的电子。它们在颗粒颈部形成时出现的原因是合成和/或加工引起的颗粒附着和聚集促进了碳原子掺入晶格。这项研究在将掺杂剂、点缺陷及其光谱特征与氧化物纳米材料的微观结构特征联系起来方面取得了重大进展。