Weems H B, Fu P P, Yang S K
Carcinogenesis. 1986 Jul;7(7):1221-30. doi: 10.1093/carcin/7.7.1221.
The direct enantiomeric resolution of non-K region trans-1,2-dihydrodiol, 1,2,3,4-tetrahydro-trans-1,2-diol, trans-3,4-dihydrodiol and 1,2,3,4-tetrahydro-trans-3,4-diol, K region trans- and cis-5,6-dihydrodiols and their monomethyl ethers of chrysene was studied by chiral stationary phase high-performance liquid chromatography (CSP-h.p.l.c.). The chiral stationary phase columns were packed with gamma-aminopropylsilanized silica to which either (R)-N-(3,5-dinitrobenzoyl)-phenylglycine or (S)-N-(3,5-dinitrobenzoyl)leucine was bonded either ionically or covalently. Enantiomers of all dihydrodiol derivatives were resolved by one or more, but not all, of the chiral stationary phases utilized. Enantiomeric resolutions were substantially improved when the non-K region dihydrodiols were converted to tetrahydrodiols. The absolute configurations of the K region trans- and cis-5,6-dihydrodiols were established by the exciton chirality circular dichroism method. The (R,R):(S,S) enantiomer ratios, determined by CSP-h.p.l.c., of the 1,2-, 3,4- and 5,6-trans-dihydrodiols formed in the metabolism of chrysene by liver microsomes from untreated male rats of the Sprague--Dawley strain were found to be 51:49, 99:1 and 86:14, respectively; from phenobarbital-treated rats, 41:59, 99:1 and 87:13, respectively; from 3-methylcholanthrene-treated rats, 96:4, 99:1 and 92:8, respectively. The absolute configurations of chrysene 5,6-epoxide enantiomers, resolved by CSP-h.p.l.c., were elucidated by the determination of the structures and absolute configurations of their methoxylation products. Both enantiomers of chrysene 5,6-epoxide were hydrated by microsomal epoxide hydrolase to chrysene trans-5,6-dihydrodiol enriched (67-92%) in the 5R,6R enantiomer. Chrysene 5R,6S-epoxide was hydrated to trans-5,6-dihydrodiol at a rate approximately 6-fold faster than chrysene 5S,6R-epoxide.
采用手性固定相高效液相色谱法(CSP - h.p.l.c.)研究了芘的非K区域反式 - 1,2 - 二氢二醇、1,2,3,4 - 四氢反式 - 1,2 - 二醇、反式 - 3,4 - 二氢二醇和1,2,3,4 - 四氢反式 - 3,4 - 二醇、K区域反式和顺式 - 5,6 - 二氢二醇及其单甲醚的直接对映体拆分。手性固定相柱填充有γ - 氨丙基硅烷化硅胶,其上离子键合或共价键合了(R) - N - (3,5 - 二硝基苯甲酰基) - 苯甘氨酸或(S) - N - (3,5 - 二硝基苯甲酰基) - 亮氨酸。所有二氢二醇衍生物的对映体通过所使用的一种或多种(但并非全部)手性固定相得以拆分。当非K区域二氢二醇转化为四氢二醇时,对映体拆分得到显著改善。K区域反式和顺式 - 5,6 - 二氢二醇的绝对构型通过激子手性圆二色性方法确定。通过CSP - h.p.l.c.测定,在未处理的Sprague - Dawley品系雄性大鼠的肝微粒体代谢芘过程中形成的1,2 - 、3,4 - 和5,6 - 反式二氢二醇的(R,R):(S,S)对映体比例分别为51:49、99:1和86:14;来自苯巴比妥处理大鼠的分别为41:59、99:1和87:13;来自3 - 甲基胆蒽处理大鼠的分别为96:4、99:1和92:8。通过CSP - h.p.l.c.拆分的芘5,6 - 环氧化物对映体的绝对构型通过其甲氧基化产物的结构和绝对构型测定得以阐明。芘5,6 - 环氧化物的两种对映体均被微粒体环氧化物水解酶水合为富含5R,6R对映体(67 - 92%)的芘反式 - 5,6 - 二氢二醇。芘5R,6S - 环氧化物水合为反式 - 5,6 - 二氢二醇的速率比芘5S,6R - 环氧化物快约6倍。