Universidad Nacional Autónoma de México (UNAM), Facultad de Química, Ciudad Universitaria, 04510 Mexico City, México.
Tecnologico de Monterrey, School of Engineering and Sciences, Atlixcáyotl 5718, Puebla, Mexico.
ACS Appl Mater Interfaces. 2023 May 31;15(21):25952-25965. doi: 10.1021/acsami.3c02997. Epub 2023 May 18.
The capture and storage of CO are of growing interest in atmospheric science since greenhouse gas emission has to be reduced considerably in the near future. The present paper deals with the doping of cations on ZrO, i.e., M-ZrO (M = Li, Mg, or Co), defecting the crystalline planes for the adsorption of carbon dioxide. The samples were prepared by the sol-gel method and characterized completely by different analytical methods. The deposition of metal ions on ZrO (whose crystalline phases: monoclinic and tetragonal are transformed into a single-phase such as tetragonal for LiZrO and cubic for MgZrO or CoZrO) shows a complete disappearance of the XRD monoclinic signal, and it is consistent with HRTEM lattice fringes: 2.957 nm for ZrO (101, tetragonal/monoclinic), 3.018 nm for tetragonal LiZrO, 2.940 nm for cubic MgZrO, and 1.526 nm for cubic CoZrO. The samples are thermally stable, resulting an average size of ∼5.0-15 nm. The surface of LiZrO creates the oxygen deficiency, while for Mg (0.089 nm), since the size of the atom is relatively greater than that of Zr (0.084 nm), the replacement of Zr by Mg in sublattice is difficult; thus, a decrease of the lattice constant was noticed. Since the high band gap energy (Δ > 5.0 eV) is suitable for CO adsorption, the samples were employed for the selective detection/capture of CO by using electrochemical impedance spectroscopy (EIS) and direct current resistance (DCR), showing that CoZrO is capable of CO capture about 75%. If M ions are deposited within the ZrO matrix, then the charge imbalance allows CO to interact with the oxygen species to form CO which produces a high resistance (21.04 × 10 (Ω, Ohm)). The adsorption of CO with the samples was also theoretically studied showing that the interaction of CO with MgZrO and CoZrO is more feasible than with LiZrO, subscribing to the experimental data. The temperature effect (273 to 573 K) for the interaction of CO with CoZrO was also studied by the docking method and observed the cubic structure is more stable at high temperatures as compared to the monoclinic geometry. Thus, CO would preferably interact with ZrO ( = -19.29 kJ/mol) than for ZrO (22.4 J/mmol (ZrO = cubic; ZrO = monoclinic).
CO 的捕集和储存在大气科学中越来越受到关注,因为在不久的将来必须大量减少温室气体的排放。本文研究了阳离子掺杂 ZrO,即 M-ZrO(M=Li、Mg 或 Co),用于缺陷晶面以吸附二氧化碳。样品采用溶胶-凝胶法制备,并采用不同的分析方法进行了全面的表征。金属离子在 ZrO(其晶相:单斜和四方相转变为单相,如 LiZrO 的四方相和 MgZrO 或 CoZrO 的立方相)上的沉积完全消除了 XRD 单斜信号,这与 HRTEM 晶格条纹一致:2.957nm(ZrO(101,四方/单斜),3.018nm(四方 LiZrO),2.940nm(立方 MgZrO),1.526nm(立方 CoZrO)。样品热稳定性好,平均粒径约为 5.0-15nm。LiZrO 的表面会产生氧空位,而对于 Mg(0.089nm),由于原子的尺寸相对大于 Zr(0.084nm),因此在亚晶格中用 Mg 取代 Zr 是困难的;因此,晶格常数减小。由于高带隙能(Δ>5.0eV)适合 CO 吸附,因此采用电化学阻抗谱(EIS)和直流电阻(DCR)对样品进行 CO 的选择性检测/捕集,结果表明 CoZrO 能够捕获约 75%的 CO。如果 M 离子沉积在 ZrO 基体中,则电荷不平衡允许 CO 与氧物种相互作用形成 CO,从而产生高电阻(21.04×10(Ω,欧姆))。通过理论研究也发现,CO 与 MgZrO 和 CoZrO 的相互作用比与 LiZrO 的相互作用更可行,这与实验数据相符。还通过对接方法研究了 CO 与 CoZrO 的温度效应(273 至 573K),观察到立方结构在高温下比单斜结构更稳定。因此,CO 更倾向于与 ZrO(=-19.29kJ/mol)相互作用,而不是与 ZrO(22.4J/mmol(ZrO=立方;ZrO=单斜)。