Suppr超能文献

探索用于杀菌剂检测的电化学传感:新合成低聚物的应用

Exploring Electrochemical Sensing for Fungicide Detection: Utilization of Newly Synthesized Oligomers.

作者信息

Mangala Gowri Veeramani, Chanpuang Pontagarn, Bunrueang Warit, Imboon Tanawat, Khamboonrueang Dusadee, Issro Chaisak, Shima Mutsuhiro, Thongmee Sirikanjana

机构信息

Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand.

Department of Chemistry, The Gandhigram Rural Institute, Gandhigram, 624 302 Dindigul, Tamilnadu, India.

出版信息

ACS Omega. 2024 Aug 16;9(34):36622-36634. doi: 10.1021/acsomega.4c04959. eCollection 2024 Aug 27.

Abstract

The determination of thiabendazole is crucial for ensuring food safety, environmental protection, and compliance with regulatory standards. Accurate detection helps prevent harmful exposure, ensuring the safety of agricultural products and safeguarding public health. Therefore, this study investigates the electrochemical sensing capabilities of newly synthesized oligo 3-amino-5-mercapto-1,2,4-triazole (oligo AMTa) using hydrogen tetrachloroaurate (III) (HAuCl) as an oxidizing agent at room temperature for thiabendazole (TBZ) detection, employing a simple electrode fabrication process. The prepared oligo AMTa was thoroughly characterized using UV-visible spectroscopy, scanning electron microscopy (SEM), Energy Dispersive X-ray Analysis (EDAX), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), high-resolution mass spectroscopy (HR-MS), and Fourier-transform infrared spectroscopy (FT-IR) to confirm its oligomerization structure and properties. The IR spectrum of oligo AMTa reveals a new peak at 1449 cm, indicating the conversion of -NH groups to -N=N- groups during oligomerization, unlike AMTa. Additionally, the disappearance of the -SH group peak at 2615 cm in oligo AMTa suggests an S-S linkage involvement in the oligomerization process. In the oligo AMTa XPS spectrum, the presence of C=N is displayed by a small peak at 287.3 eV, and oligomerization via -NH and N=N is confirmed by the lack of a 284.0 eV peak for C-C or C=C. Gold nanoparticle formation is not demonstrated by the 84.8 eV peak, which implies that the gold atom is not in the Au state. The HR-MS spectrum of oligo AMTa shows a peak at / 564.08, indicating a chain of five monomers, and another peak at / 435.03, confirming the presence of a tetrameric form of AMTa. After that, the GC electrode was directly linked to the oligo AMTa by the potentiodynamic method. SEM, electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV) were all employed to confirm the fabrication of oligo AMTa. The SEM image illustrates the formation of a particlelike structure with a uniform size of the oligomer after cycling in 0.1 M HSO. After electrocycling, the size of the oligomer was reduced from 2.6 μm to 30 nm. The oligo AMTa-modified electrode possesses the highest electroactive surface area and electrical conductivity due to several key factors. First, the presence of amino (-NH) and thiol (-SH) functional groups in AMTa enhances the surface coverage and density of electroactive sites, increasing the electroactive surface area. Additionally, the conjugated structure of AMTa facilitates efficient electron transfer, resulting in enhanced electrical conductivity compared to unmodified electrodes. Eventually, the electrochemical oxidation of TBZ occurred using the fabricated electrodes. The GC/oligo AMTa electrode exhibited a four-fold increase in oxidation current for TBZ compared to unmodified GC electrodes. This enhancement is due to the improved surface properties from the oligo AMTa modification, which significantly boosts TBZ adsorption through strong interactions like hydrogen bonding and π-π stacking. These interactions, along with the increased surface area and catalytic properties, facilitate effective electron transfer, resulting in a higher oxidation current. As an outcome, the film was employed to determine the sensitivity level of TBZ, and a LOD of 1.8 × 10 M (S/N = 3) was found. The straightforward method's practical utility was proven by measuring TBZ in tap water, water spinach, and pear juice samples. The comprehensive characterization of oligo AMTa provided insights into its interaction mechanisms with thiabendazole, contributing to the development of a reliable, cost-effective, and efficient sensor.

摘要

噻苯达唑的测定对于确保食品安全、环境保护以及符合监管标准至关重要。准确的检测有助于防止有害暴露,确保农产品安全并保障公众健康。因此,本研究在室温下使用氯金酸(III)(HAuCl)作为氧化剂,采用简单的电极制备工艺,研究新合成的寡聚3-氨基-5-巯基-1,2,4-三唑(oligo AMTa)对噻苯达唑(TBZ)的电化学传感能力。使用紫外-可见光谱、扫描电子显微镜(SEM)、能量色散X射线分析(EDAX)、X射线衍射(XRD)、X射线光电子能谱(XPS)、高分辨率质谱(HR-MS)和傅里叶变换红外光谱(FT-IR)对制备的oligo AMTa进行了全面表征,以确认其低聚结构和性质。oligo AMTa的红外光谱在1449 cm处显示一个新峰,表明在低聚过程中-NH基团转化为-N=N-基团,这与AMTa不同。此外,oligo AMTa中2615 cm处-SH基团峰的消失表明低聚过程中涉及S-S键。在oligo AMTa的XPS光谱中,287.3 eV处的一个小峰显示了C=N的存在,并且由于缺少C-C或C=C的284.0 eV峰,证实了通过-NH和N=N进行的低聚。84.8 eV峰未表明金纳米颗粒的形成,这意味着金原子不是处于Au状态。oligo AMTa的HR-MS光谱在/ 564.08处显示一个峰,表明有五个单体的链,在/ 435.03处有另一个峰,证实了AMTa四聚体形式的存在。之后,通过动电位法将玻碳电极直接与oligo AMTa连接。使用SEM、电化学阻抗谱(EIS)和循环伏安法(CV)来确认oligo AMTa的制备。SEM图像显示在0.1 M HSO中循环后形成了尺寸均匀的低聚物颗粒状结构。电循环后,低聚物的尺寸从2.6μm减小到30 nm。由于几个关键因素,oligo AMTa修饰电极具有最高的电活性表面积和电导率。首先,AMTa中氨基(-NH)和硫醇(-SH)官能团的存在增加了电活性位点的表面覆盖率和密度,增加了电活性表面积。此外,AMTa的共轭结构促进了有效的电子转移,与未修饰的电极相比,电导率增强。最终,使用制备的电极发生了TBZ的电化学氧化。与未修饰的玻碳电极相比,GC/oligo AMTa电极对TBZ的氧化电流增加了四倍。这种增强是由于oligo AMTa修饰改善了表面性质,通过氢键和π-π堆积等强相互作用显著提高了TBZ的吸附。这些相互作用以及增加的表面积和催化性能促进了有效的电子转移,导致更高的氧化电流。结果,该膜用于测定TBZ的灵敏度水平,发现检测限为1.8×10 M(S/N = 3)。通过测量自来水、空心菜和梨汁样品中的TBZ,证明了该简单方法的实际实用性。对oligo AMTa的全面表征提供了其与噻苯达唑相互作用机制的见解,有助于开发可靠、经济高效的传感器。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be89/11359631/47c317c1f1b4/ao4c04959_0012.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验