Compton Patrick, Dehkordi Nazli Rafei, Knapp Michael, Fernandez Loretta A, Alshawabkeh Akram N, Larese-Casanova Philip
Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, United States.
Front Chem Eng. 2022;4. doi: 10.3389/fceng.2022.864816. Epub 2022 May 3.
New insensitive high explosives pose great challenges to conventional explosives manufacturing wastewater treatment processes and require advanced methods to effectively and efficiently mineralize these recalcitrant pollutants. Oxidation processes that utilize the fundamental techniques of Fenton chemistry optimized to overcome conventional limitations are vital to provide efficient degradation of these pollutants while maintaining cost-effectiveness and scalability. In this manner, utilizing heterogeneous catalysts and generated HO to degrade IHEs is proposed. For heterogeneous catalyst optimization, varying the surface chemistry of activated carbon for use as a catalyst removes precipitation complications associated with iron species in Fenton chemistry while including removal by adsorption. Activated carbon impregnated with 5% MnO in the presence of HO realized a high concentration of hydroxyl radical formation - 140 μM with 10 mM HO - while maintaining low cost and relative ease of synthesis. This AC-Mn5 catalyst performed effectively over a wide pH range and in the presence of varying HO concentrations with a sufficient effective lifetime. generation of HO removes the logistical and economic constraints associated with external HO, with hydrophobic carbon electrodes utilizing generated gaseous O for 2-electron oxygen reduction reactions. In a novel flow-through reactor, gaseous O is generated on a titanium/mixed metal oxide anode with subsequent HO electrogeneration on a hydrophobic microporous-layered carbon cloth cathode. This reactor is able to electrogenerate 2 mM HO at an optimized current intensity of 150 mA and over a wide range of flow rates, influent pH values, and through multiple iterations. Coupling these two optimization methods realizes the production of highly oxidative hydroxyl radicals by Fenton-like catalysis of electrogenerated HO on the surface of an MnO-impregnated activated carbon catalyst. This method incorporates electrochemically induced oxidation of munitions in addition to removal by adsorption while maintaining cost-effectiveness and scalability. It is anticipated this platform holds great promise to eliminate analogous contaminants.
新型钝感高能炸药给传统炸药制造废水处理工艺带来了巨大挑战,需要先进的方法来有效且高效地将这些难降解污染物矿化。利用优化后的芬顿化学基本技术以克服传统局限性的氧化工艺,对于在保持成本效益和可扩展性的同时有效降解这些污染物至关重要。通过这种方式,提出利用非均相催化剂和生成的羟基自由基来降解新型钝感高能炸药。对于非均相催化剂的优化,改变用作催化剂的活性炭的表面化学性质,可消除与芬顿化学中铁物种相关的沉淀问题,同时包括通过吸附进行去除。在过氧化氢存在下,浸渍5%二氧化锰的活性炭实现了高浓度羟基自由基的形成——10 mM过氧化氢时为140 μM——同时保持低成本和相对易于合成。这种AC-Mn5催化剂在较宽的pH范围内以及不同过氧化氢浓度存在的情况下均能有效发挥作用,且具有足够长的有效寿命。过氧化氢的生成消除了与外部过氧化氢相关的后勤和经济限制,疏水性碳电极利用生成的气态氧进行2电子氧还原反应。在一种新型流通式反应器中,气态氧在钛/混合金属氧化物阳极上生成,随后在疏水性微孔层状碳布阴极上进行羟基自由基的电生成。该反应器能够在150 mA的优化电流强度下,在较宽的流速、进水pH值范围内以及经过多次循环时电生成2 mM的羟基自由基。将这两种优化方法相结合,通过在浸渍二氧化锰的活性炭催化剂表面对电生成的过氧化氢进行类芬顿催化,实现了高氧化性羟基自由基的产生。该方法除了通过吸附去除外,还纳入了弹药的电化学诱导氧化,同时保持成本效益和可扩展性。预计这个平台在消除类似污染物方面具有巨大潜力。