Suppr超能文献

DARVIC:用于错义 VUS 功能预测的依赖二面角变异影响分类器。

DARVIC: Dihedral angle-reliant variant impact classifier for functional prediction of missense VUS.

机构信息

Cancer Centre and Institute of Translational Medicine, Department of Public Health and Medical Administration, Faculty of Health Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macao.

Cancer Centre and Institute of Translational Medicine, Department of Public Health and Medical Administration, Faculty of Health Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macao; Senior Author, Macao.

出版信息

Comput Methods Programs Biomed. 2023 Aug;238:107596. doi: 10.1016/j.cmpb.2023.107596. Epub 2023 May 11.

Abstract

BACKGROUND

Of the large number of genetic variants identified, the functional impact for most of them remains unknown. Mutations in DNA damage repair genes such as MUTYH, which is involved in repairing A:8-oxoG mismatches caused by reactive oxygen species, can cause a higher risk of cancer. Mutations happening in other key genes such as TP53 also pose huge health threats and risk of cancer. The interpretation of genetic variants' functional impact is a forefront issue that needs to be addressed. Many different in silico methods based on different principles have been developed and applied in interpreting genetic variants. However, a current challenge is that many existing methods tend to overpredict the pathogenicity of benign variants. A new approach is needed to tackle this issue to improve genetic variant interpretation through the use of in silico methods.

METHODS

In this study, we developed another protein structural-based approach called Dihedral angle-reliant variant impact classifier (DARVIC) to predict the deleterious impact of the coding-changing missense variants. DARVIC uses Ramachandran's principle of protein stereochemistry as the theoretical foundation and uses molecular dynamics simulations coupled with a supervised machine learning algorithm XGBoost to determine the functional impact of missense variants on protein structural stability.

RESULTS

We characterized the features of dihedral angles in dynamic protein structures. We also tested the performance of DARVIC in MUTYH and TP53 missense variants and achieved satisfactory results in reflecting the functional impacts of the variants on protein structure. The method achieved a balanced accuracy of 84% in a functionally validated MUTYH dataset containing both benign and pathogenic missense variants, higher than other existing in silico methods. Along with that, DARVIC was able to predict 119 (47%) deleterious variants from a dataset of 254 MUTYH VUS. Further application of DARVIC to a functionally validated TP53 dataset had a balanced accuracy of 94%, topping other methods, demonstrating DARVIC's robustness.

CONCLUSION

DARVIC provides a valuable tool to predict the functional impacts of missense variants based on their effects on protein structural stability and motion. At its current state, DARVIC performed well in predicting the functional impact of the missense variants both in MUTYH and TP53. We expect its high potential to predict functional impact for the missense variants in other genes.

摘要

背景

在已鉴定的大量遗传变异中,大多数的功能影响仍不清楚。例如,DNA 损伤修复基因 MUTYH 中的突变,其参与修复活性氧引起的 A:8-氧代鸟嘌呤错配,可导致更高的癌症风险。发生在其他关键基因如 TP53 中的突变也构成了巨大的健康威胁和癌症风险。遗传变异功能影响的解释是一个需要解决的前沿问题。已经开发并应用了许多基于不同原理的不同的计算方法来解释遗传变异。然而,目前的一个挑战是,许多现有的方法往往会过度预测良性变异的致病性。需要一种新的方法来解决这个问题,通过使用计算方法来提高遗传变异的解释。

方法

在这项研究中,我们开发了另一种基于蛋白质结构的方法,称为二面角依赖变异影响分类器(DARVIC),用于预测编码改变的错义变异的有害影响。DARVIC 使用 Ramachandran 的蛋白质立体化学原理作为理论基础,并使用分子动力学模拟结合监督机器学习算法 XGBoost来确定错义变异对蛋白质结构稳定性的功能影响。

结果

我们描述了动态蛋白质结构中二面角的特征。我们还在 MUTYH 和 TP53 错义变异中测试了 DARVIC 的性能,并在反映变异对蛋白质结构功能影响方面取得了令人满意的结果。该方法在包含良性和致病性错义变异的功能验证的 MUTYH 数据集上达到了 84%的平衡准确性,优于其他现有的计算方法。此外,DARVIC 能够从 254 个 MUTYH VUS 数据集中预测 119 个(47%)有害变异。进一步将 DARVIC 应用于功能验证的 TP53 数据集,平衡准确率为 94%,优于其他方法,证明了 DARVIC 的稳健性。

结论

DARVIC 提供了一种基于其对蛋白质结构稳定性和运动影响来预测错义变异功能影响的有价值的工具。在目前的状态下,DARVIC 在预测 MUTYH 和 TP53 中的错义变异的功能影响方面表现良好。我们期望它有很高的潜力来预测其他基因中的错义变异的功能影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验