College of Horticulture, South China Agricultural University, Guangzhou 510642, PR China.
Key Laboratory for Biobased Materials and Energy of Ministry of Education, Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, PR China.
Ecotoxicol Environ Saf. 2023 Jul 1;259:115023. doi: 10.1016/j.ecoenv.2023.115023. Epub 2023 May 16.
In highly intensive greenhouse vegetable production, soil acidification was caused by excessive fertilization, increasing cadmium (Cd) concentrations in the vegetables, which bears environmental hazards and is a negative influence on vegetables and humans. Transglutaminases (TGases), a central mediator for certain physiological effects of polyamines (PAs) in the plant kingdom, play important roles in plant development and stress response. Despite increased research on the crucial role of TGase in protecting against environmental stresses, relatively little is known about the mechanisms of Cd tolerance. In this study, we found, TGase activity and transcript level, which was upregulated by Cd, and TGase-induced Cd tolerance related to endogenous bound PAs increase and formation of nitric oxide (NO). Plant growth of tgase mutants was hypersensitive to Cd, chemical complementation by putrescine, sodium nitroprusside (SNP, nitric oxide donor) or gain of function TGase experiments restore Cd tolerance. α-diflouromethylornithine (DFMO, a selective ODC inhibitor) and 2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO, NO scavenger), were respectively found declined drastically endogenous bound PA and NO content in TGase overexpression plants. Likewise, we reported that TGase interacted with polyamine uptake protein 3 (Put3), and the silencing of Put3 largely reduced TGase-induced Cd tolerance and bound PAs formation. This salvage strategy depends on TGase-regulated synthesis of bound PAs and NO that is able to positively increase the concentration of thiol and phytochelatins, elevate Cd in the cell wall, as well as induce the levels of expression Cd uptake and transport genes. Collectively, these findings indicate that TGase-mediated enhanced levels of bound PA and NO acts as a vital mechanism to protect the plant from Cd-caused toxicity.
在高度集约化的温室蔬菜生产中,施肥过度导致土壤酸化,从而增加了蔬菜中的镉(Cd)浓度,这对环境构成了危害,对蔬菜和人类都有负面影响。转谷氨酰胺酶(TGase)是植物王国中多胺(PAs)某些生理效应的中心介质,在植物发育和应激反应中发挥重要作用。尽管对 TGase 在抵御环境胁迫中的关键作用的研究有所增加,但对 Cd 耐受性的机制知之甚少。在这项研究中,我们发现,Cd 上调了 TGase 活性和转录水平,TGase 诱导的 Cd 耐受性与内源结合 PAs 的增加和一氧化氮(NO)的形成有关。tgase 突变体的植物生长对 Cd 敏感,腐胺、硝普钠(NO 供体)或功能获得性 TGase 实验的化学互补恢复了 Cd 耐受性。α-二氟甲基鸟氨酸(DFMO,一种选择性 ODC 抑制剂)和 2-4-羧基苯基-4,4,5,5-四甲基咪唑啉-1-氧-3-氧化物(cPTIO,NO 清除剂)分别发现,TGase 过表达植物中的内源结合 PA 和 NO 含量急剧下降。同样,我们报告说 TGase 与多胺摄取蛋白 3(Put3)相互作用,而 Put3 的沉默大大降低了 TGase 诱导的 Cd 耐受性和结合 PAs 的形成。这种挽救策略依赖于 TGase 调节的结合 PA 和 NO 的合成,这能够正向增加巯基和植物螯合肽的浓度,提高细胞壁中的 Cd 浓度,并诱导 Cd 摄取和转运基因的表达水平。总的来说,这些发现表明,TGase 介导的结合 PA 和 NO 水平的提高是保护植物免受 Cd 毒性的重要机制。