Chemical Genomics Centre, Max Planck Institute of Molecular Physiology, Dortmund, 44227, Germany; Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, 44227, Germany; Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, 44227, Germany.
Crystallography and Biophysics Unit, Max Planck Institute of Molecular Physiology, Dortmund, 44227, Germany.
Eur J Med Chem. 2023 Aug 5;256:115439. doi: 10.1016/j.ejmech.2023.115439. Epub 2023 May 3.
Ribonuclease L (RNase L) plays a crucial role in an antiviral pathway of interferon-induced innate immunity by degrading RNAs to prevent viral replication. Modulating RNase L activity thus mediates the innate immune responses and inflammation. Although a few small molecule-based RNase L modulators have been reported, only limited molecules have been mechanistically investigated. This study explored the strategy of RNase L targeting by using a structure-based rational design approach and evaluated the RNase L-binding and inhibitory activities of the yielded 2-((pyrrol-2-yl)methylene)thiophen-4-ones, which exhibited improved inhibitory effect as determined by in vitro FRET and gel-based RNA cleavage assay. A further structural optimization study yielded selected thiophenones that showed >30-fold more potent inhibitory activity than that of sunitinib, the approved kinase inhibitor with reported RNase L inhibitory activity. The binding mode with RNase L for the resulting thiophenones was analyzed by using docking analysis. Furthermore, the obtained 2-((pyrrol-2-yl)methylene)thiophen-4-ones exhibited efficient inhibition of RNA degradation in cellular rRNA cleavage assay. The newly designed thiophenones are the most potent synthetic RNase L inhibitors reported to date and the results revealed in our study lay the foundation for the development of future RNase L-modulating small molecules with new scaffold and improved potency.
核糖核酸酶 L(RNase L)在干扰素诱导的先天免疫抗病毒途径中发挥着关键作用,通过降解 RNA 来阻止病毒复制。调节 RNase L 的活性从而调节先天免疫反应和炎症。虽然已经报道了一些基于小分子的 RNase L 调节剂,但只有有限的分子进行了机制研究。本研究通过基于结构的合理设计方法探索了靶向 RNase L 的策略,并评估了所得的 2-((吡咯-2-基)亚甲基)噻吩-4-ones 的 RNase L 结合和抑制活性,通过体外 FRET 和基于凝胶的 RNA 切割测定,发现这些化合物表现出改善的抑制作用。进一步的结构优化研究产生了选定的噻吩酮,其抑制活性比具有报道的 RNase L 抑制活性的已批准激酶抑制剂舒尼替尼高 30 多倍。使用对接分析分析了所得噻吩酮与 RNase L 的结合模式。此外,所获得的 2-((吡咯-2-基)亚甲基)噻吩-4-ones 在细胞 rRNA 切割测定中表现出有效的抑制 RNA 降解作用。新设计的噻吩酮是迄今为止报道的最有效的合成 RNase L 抑制剂,我们的研究结果为开发具有新骨架和更高效力的未来 RNase L 调节小分子奠定了基础。