College of Chemistry, Beijing Normal University, Beijing 100875, China.
Department of Otorhinolaryngology, Peking University Third Hospital, Beijing 100191, China.
Anal Chem. 2023 May 30;95(21):8232-8238. doi: 10.1021/acs.analchem.3c00110. Epub 2023 May 18.
Potentiometry based on the galvanic cell mechanism, i.e., galvanic redox potentiometry (GRP), has recently emerged as a new tool for in vivo neurochemical sensing with high neuronal compatibility and good sensing property. However, the stability of open circuit voltage () outputting remains to be further improved for in vivo sensing application. In this study, we find that the stability could be enhanced by adjusting the sort and the concentration ratio of the redox couple in the counterpart pole (i.e., indicating electrode) of GRP. With dopamine (DA) as the sensing target, we construct a spontaneously powered single-electrode-based GRP sensor (GRP) and investigate the correlation between the stability and the redox couple used in the counterpart pole. Theoretical consideration suggests that the drift is minimum when the concentration ratio of the oxidized form (O) to the reduced form (R) of the redox species in the backfilled solution is 1:1. The experimental results demonstrate that, compared with other redox species (i.e., dissolved O at 3 M KCl, potassium ferricyanide (KFe(CN)), and hexaammineruthenium(III) chloride (Ru(NH)Cl)) used as the counterpart pole, potassium hexachloroiridate(IV) (KIrCl) exhibits better chemical stability and outputs more stable . As a result, when IrCl with the concentration ratio of 1:1 is used as the counterpart, GRP displays not only an excellent stability (i.e., 3.8 mV drifting during 2200 s for in vivo recording) but also small electrode-to-electrode variation (i.e., the maximum variation between four electrodes is 2.7 mV). Upon integration with the electrophysiology, GRP records a robust DA release, accompanied by a burst of neural firing, during the optical stimulation. This study paves a new avenue to stable neurochemical sensing in vivo.
基于原电池机制的电位法,即电化还原电位法(GRP),最近作为一种新的工具出现,用于具有高神经元兼容性和良好传感性能的活体神经化学传感。然而,为了实现活体传感应用,仍需要进一步提高开路电压()的输出稳定性。在本研究中,我们发现通过调整 GRP 对电极(即指示电极)中氧化还原对的种类和浓度比,可以提高稳定性。以多巴胺(DA)为传感目标,我们构建了一种自发供电的基于单电极的 GRP 传感器(GRP),并研究了稳定性与对电极中使用的氧化还原对之间的相关性。理论考虑表明,当回充溶液中氧化还原物种的氧化形式(O)与还原形式(R)的浓度比为 1:1 时,漂移最小。实验结果表明,与其他氧化还原物种(即 3 M KCl 中的溶解 O、铁氰化钾(KFe(CN))和六氨合钌(III)氯化物(Ru(NH)Cl))相比,作为对电极使用的六氯铱酸(IV)(KIrCl)具有更好的化学稳定性,并且输出更稳定的。因此,当使用浓度比为 1:1 的 IrCl 作为对电极时,GRP 不仅显示出优异的稳定性(即体内记录期间 3.8 mV 的漂移持续 2200 s),而且电极间的变化也很小(即四个电极之间的最大变化为 2.7 mV)。与电生理学相结合,GRP 在光刺激期间记录到强大的 DA 释放,伴随着神经爆发。本研究为体内稳定的神经化学传感开辟了新途径。