Suppr超能文献

通过与中孔载体共处理,同时消除冲压粘冲、改善可制造性并提高溶解度,从而实现塞来昔布的直接压缩片配方。

Enabling direct compression tablet formulation of celecoxib by simultaneously eliminating punch sticking, improving manufacturability, and enhancing dissolution through co-processing with a mesoporous carrier.

机构信息

Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, 9-127B Weaver-Densford Hall, 308 Harvard Street S.E, Minneapolis, MN 55455, United States.

Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, 9-127B Weaver-Densford Hall, 308 Harvard Street S.E, Minneapolis, MN 55455, United States.

出版信息

Int J Pharm. 2023 Jun 25;641:123041. doi: 10.1016/j.ijpharm.2023.123041. Epub 2023 May 16.

Abstract

The development of a high quality tablet of Celecoxib (CEL) is challenged by poor dissolution, poor flowability, and high punch sticking propensity of CEL. In this work, we demonstrate a particle engineering approach, by loading a solution of CEL in an organic solvent into a mesoporous carrier to form a coprocessed composite, to enable the development of tablet formulations up to 40% (w/w) of CEL loading with excellent flowability and tabletability, negligible punch sticking propensity, and a 3-fold increase in in vitro dissolution compared to a standard formulation of crystalline CEL. CEL is amorphous in the drug-carrier composite and remained physically stable after 6 months under accelerated stability conditions when the CEL loading in the composite was ≤ 20% (w/w). However, crystallization of CEL to different extents from the composites was observed under the same stability condition when CEL loading was 30-50% (w/w). The success with CEL encourages broader exploration of this particle engineering approach in enabling direct compression tablet formulations for other challenging active pharmaceutical ingredients.

摘要

塞来昔布(CEL)片剂质量不佳,存在溶出度差、流动性差和冲头黏附倾向高的问题。在这项工作中,我们通过将 CEL 的有机溶剂溶液载入介孔载体中形成共处理复合材料,展示了一种颗粒工程方法,从而能够开发高达 40%(w/w)载药量的片剂配方,具有优异的流动性和可压性、可忽略的冲头黏附倾向,以及与晶型 CEL 的标准配方相比,体外溶出度提高了 3 倍。CEL 在药物载体复合材料中呈无定形态,在复合载药量≤20%(w/w)时,在加速稳定性条件下放置 6 个月后仍保持物理稳定性。然而,当 CEL 载药量为 30-50%(w/w)时,在相同的稳定性条件下,从复合材料中观察到 CEL 不同程度的结晶。CEL 的成功为其他具有挑战性的活性药物成分的直接压片配方提供了更广泛的探索这种颗粒工程方法的机会。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验