Suppr超能文献

牲畜和施用粪肥产生的排泄物氨和氧化亚氮排放因子的关键因素影响。

Influence of key factors on ammonia and nitrous oxide emission factors for excreta deposited by livestock and land-applied manure.

机构信息

AgResearch Ltd, Invermay Agricultural Centre, Mosgiel 9053, New Zealand.

AgResearch Ltd, Lincoln Research Centre, Christchurch 8140, New Zealand.

出版信息

Sci Total Environ. 2023 Sep 1;889:164066. doi: 10.1016/j.scitotenv.2023.164066. Epub 2023 May 17.

Abstract

Ammonia (NH) and nitrous oxide (NO) emissions from livestock manure management have a significant impact on air quality and climate change. There is an increasing urgency to improve our understanding of drivers influencing these emissions. We analysed the DATAMAN ("DATAbase for MANaging greenhouse gas and ammonia emissions factors") database to identify key factors influencing (i) NH emission factors (EFs) for cattle and swine manure applied to land and (ii) NO EFs for cattle and swine manure applied to land, and (iii) cattle urine, dung and sheep urine deposited during grazing. Slurry dry matter (DM) content, total ammoniacal nitrogen (TAN) concentration and method of application were significant drivers of NH EFs from cattle and swine slurry. Mixed effect models explained 14-59 % of the variance in NH EFs. Apart from the method of application, the significant influence of manure DM, manure TAN concentration or pH on NH EFs suggests mitigation strategies should focus on these. Identifying key factors influencing NO EFs from manures and livestock grazing was more challenging, likely because of the complexities associated with microbial processes and soil physical properties impacting NO production and emissions. Generally, significant factors were soil-related e.g. soil water content, pH, clay content, suggesting mitigations may need to consider the conditions of the receiving environment for manure spreading and grazing deposition. Total variability explained by terms in mixed effect model was on average 66 %, with the random effect 'experiment identification number' explaining, on average, 41 % of the total variability in the models. We suspect this term captured the effect of non-measured manure, soil and climate factors and any biases in application and measurement technique effects associated with individual experiments. This analysis has helped to improve our understanding of key factors of NH and NO EFs for inclusion within models. With more studies over time, insights into the underlying processes influencing emissions will be further improved.

摘要

氨(NH)和氧化亚氮(NO)排放来自牲畜粪便管理,对空气质量和气候变化有重大影响。我们越来越迫切地需要提高对影响这些排放的驱动因素的理解。我们分析了 DATAMAN(“管理温室气体和氨排放因子数据库”)数据库,以确定影响以下因素的关键因素:(i)施用于土地的牛和猪粪便的 NH 排放因子(EF),(ii)施用于土地的牛和猪粪便的 NO EF,以及(iii)放牧期间牛尿、粪和羊尿的沉积。粪浆干物质(DM)含量、总氨氮(TAN)浓度和应用方法是牛和猪粪浆 NH EF 的重要驱动因素。混合效应模型解释了 NH EF 变化的 14-59%。除了应用方法外,粪便 DM、TAN 浓度或 pH 对 NH EF 的显著影响表明,缓解策略应重点关注这些因素。确定影响粪便和牲畜放牧中 NO EF 的关键因素更具挑战性,这可能是由于与微生物过程和影响 NO 产生和排放的土壤物理特性相关的复杂性。通常,重要因素与土壤有关,例如土壤含水量、pH 值、粘土含量,这表明缓解措施可能需要考虑粪便施撒和放牧沉积的接收环境的条件。混合效应模型中术语解释的总可变性平均为 66%,随机效应“实验识别号”平均解释模型总可变性的 41%。我们怀疑这个术语捕获了未测量的粪便、土壤和气候因素以及与个别实验相关的应用和测量技术效果的任何偏差的影响。这种分析有助于提高我们对 NH 和 NO EF 关键因素的理解,以便纳入模型。随着时间的推移进行更多的研究,将进一步提高对影响排放的潜在过程的理解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验