Suppr超能文献

评估类风湿关节炎表型算法的可移植性:基于法国电子健康记录的案例研究。

Evaluating the Portability of Rheumatoid Arthritis Phenotyping Algorithms: A Case Study on French EHRs.

机构信息

University hospital of Strasbourg, France.

ICube Laboratory, Strasbourg, France.

出版信息

Stud Health Technol Inform. 2023 May 18;302:768-772. doi: 10.3233/SHTI230263.

Abstract

Previous work has successfully used machine learning and natural language processing for the phenotyping of Rheumatoid Arthritis (RA) patients in hospitals within the United States and France. Our goal is to evaluate the adaptability of RA phenotyping algorithms to a new hospital, both at the patient and encounter levels. Two algorithms are adapted and evaluated with a newly developed RA gold standard corpus, including annotations at the encounter level. The adapted algorithms offer comparably good performance for patient-level phenotyping on the new corpus (F1 0.68 to 0.82), but lower performance for encounter-level (F1 0.54). Regarding adaptation feasibility and cost, the first algorithm incurred a heavier adaptation burden because it required manual feature engineering. However, it is less computationally intensive than the second, semi-supervised, algorithm.

摘要

先前的工作已经成功地将机器学习和自然语言处理应用于美国和法国医院的类风湿关节炎(RA)患者的表型分析。我们的目标是评估 RA 表型分析算法在新医院中的适应性,包括在患者和就诊两个层面上。我们使用新开发的 RA 黄金标准语料库来调整和评估两种算法,其中包括就诊层面的注释。在新语料库上,调整后的算法在患者层面的表型分析上表现相当好(F1 值为 0.68 到 0.82),但在就诊层面的表现较低(F1 值为 0.54)。关于适应性的可行性和成本,第一个算法的调整负担更重,因为它需要手动进行特征工程。然而,它的计算量比第二个半监督算法要小。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验