Suppr超能文献

基于电子健康记录的弱监督表型研究

Weakly Semi-supervised phenotyping using Electronic Health records.

机构信息

Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA.

Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.

出版信息

J Biomed Inform. 2022 Oct;134:104175. doi: 10.1016/j.jbi.2022.104175. Epub 2022 Sep 5.

Abstract

OBJECTIVE

Electronic Health Record (EHR) based phenotyping is a crucial yet challenging problem in the biomedical field. Though clinicians typically determine patient-level diagnoses via manual chart review, the sheer volume and heterogeneity of EHR data renders such tasks challenging, time-consuming, and prohibitively expensive, thus leading to a scarcity of clinical annotations in EHRs. Weakly supervised learning algorithms have been successfully applied to various EHR phenotyping problems, due to their ability to leverage information from large quantities of unlabeled samples to better inform predictions based on a far smaller number of patients. However, most weakly supervised methods are subject to the challenge to choose the right cutoff value to generate an optimal classifier. Furthermore, since they only utilize the most informative features (i.e., main ICD and NLP counts) they may fail for episodic phenotypes that cannot be consistently detected via ICD and NLP data. In this paper, we propose a label-efficient, weakly semi-supervised deep learning algorithm for EHR phenotyping (WSS-DL), which overcomes the limitations above.

MATERIALS AND METHODS

WSS-DL classifies patient-level disease status through a series of learning stages: 1) generating silver standard labels, 2) deriving enhanced-silver-standard labels by fitting a weakly supervised deep learning model to data with silver standard labels as outcomes and high dimensional EHR features as input, and 3) obtaining the final prediction score and classifier by fitting a supervised learning model to data with a minimal number of gold standard labels as the outcome, and the enhanced-silver-standard labels and a minimal set of most informative EHR features as input. To assess the generalizability of WSS-DL across different phenotypes and medical institutions, we apply WSS-DL to classify a total of 17 diseases, including both acute and chronic conditions, using EHR data from three healthcare systems. Additionally, we determine the minimum quantity of training labels required by WSS-DL to outperform existing supervised and semi-supervised phenotyping methods.

RESULTS

The proposed method, in combining the strengths of deep learning and weakly semi-supervised learning, successfully leverages the crucial phenotyping information contained in EHR features from unlabeled samples. Indeed, the deep learning model's ability to handle high-dimensional EHR features allows it to generate strong phenotype status predictions from silver standard labels. These predictions, in turn, provide highly effective features in the final logistic regression stage, leading to high phenotyping accuracy in notably small subsets of labeled data (e.g. n = 40 labeled samples).

CONCLUSION

Our method's high performance in EHR datasets with very small numbers of labels indicates its potential value in aiding doctors to diagnose rare diseases as well as conditions susceptible to misdiagnosis.

摘要

目的:电子病历(EHR)基于表型的方法是生物医学领域中一个非常关键但具有挑战性的问题。虽然临床医生通常通过手动图表审查来确定患者级别的诊断,但 EHR 数据的数量和异质性使得这些任务具有挑战性、耗时且非常昂贵,从而导致 EHR 中临床注释的稀缺。由于能够利用大量未标记样本的信息,因此弱监督学习算法已成功应用于各种 EHR 表型分析问题,从而可以根据少数患者更好地预测。然而,大多数弱监督方法都面临选择正确的截止值以生成最佳分类器的挑战。此外,由于它们仅利用最具信息性的特征(即主要的 ICD 和 NLP 计数),因此对于不能通过 ICD 和 NLP 数据一致检测到的偶发性表型,它们可能会失败。在本文中,我们提出了一种高效、弱半监督深度学习算法(WSS-DL)用于 EHR 表型分析,该算法克服了上述限制。

材料和方法:WSS-DL 通过一系列学习阶段对患者级别的疾病状态进行分类:1)生成银标准标签,2)通过将弱监督深度学习模型拟合到具有银标准标签作为结果和高维 EHR 特征作为输入的数据中,得出增强的银标准标签,3)通过将监督学习模型拟合到具有作为结果的最少数量的金标准标签的数据中,以及增强的银标准标签和最小数量的最具信息性的 EHR 特征作为输入,获得最终的预测得分和分类器。为了评估 WSS-DL 在不同表型和医疗机构中的泛化能力,我们使用来自三个医疗系统的 EHR 数据,应用 WSS-DL 来对总共 17 种疾病进行分类,包括急性和慢性疾病。此外,我们确定了 WSS-DL 超越现有监督和半监督表型分析方法所需的最小训练标签数量。

结果:该方法结合了深度学习和弱半监督学习的优势,成功利用了 EHR 特征中包含的关键表型信息。实际上,深度学习模型处理高维 EHR 特征的能力使其能够从银标准标签生成强大的表型状态预测。这些预测反过来又在最终的逻辑回归阶段提供了非常有效的特征,从而在显著较小的标记数据子集(例如 n=40 个标记样本)中实现了高表型准确性。

结论:我们的方法在具有非常少标签的 EHR 数据集上的高性能表明,它在帮助医生诊断罕见疾病和易误诊的疾病方面具有潜在价值。

相似文献

1
Weakly Semi-supervised phenotyping using Electronic Health records.基于电子健康记录的弱监督表型研究
J Biomed Inform. 2022 Oct;134:104175. doi: 10.1016/j.jbi.2022.104175. Epub 2022 Sep 5.
9
Enabling phenotypic big data with PheNorm.利用 PheNorm 实现表型大数据。
J Am Med Inform Assoc. 2018 Jan 1;25(1):54-60. doi: 10.1093/jamia/ocx111.

本文引用的文献

2
Automatic phenotyping of electronical health record: PheVis algorithm.电子健康记录的自动表型分析:PheVis算法。
J Biomed Inform. 2021 May;117:103746. doi: 10.1016/j.jbi.2021.103746. Epub 2021 Mar 19.
6
Exploring Large-scale Public Medical Image Datasets.探索大规模公共医学图像数据集。
Acad Radiol. 2020 Jan;27(1):106-112. doi: 10.1016/j.acra.2019.10.006. Epub 2019 Nov 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验