Suppr超能文献

使用 RE-AIM 框架对出院预测工具的实施情况进行定性评估。

Qualitative Assessment of Implementation of a Discharge Prediction Tool Using RE-AIM Framework.

机构信息

Icahn School of Medicine at Mount Sinai, New York, NY, USA.

出版信息

Stud Health Technol Inform. 2023 May 18;302:596-600. doi: 10.3233/SHTI230212.

Abstract

The implementation process in the routine clinical care of a new predictive tool based on machine learning algorithms has been investigated using the RE-AIM framework. Semi-structured qualitative interviews have been conducted with a broad range of clinicians to elucidate potential barriers and facilitators of the implementation process across five major domains: Reach, Efficacy, Adoption, Implementation, and Maintenance. The analysis of 23 clinician interviews demonstrated a limited reach and adoption of the new tool and identified areas for improvement in implementation and maintenance. Future implementation efforts of machine learning tools should support the proactive engagement of a wide range of clinical users since the very initiation of the predictive analytics project, provide higher transparency of the underlying algorithms, employ broader onboarding of all potential users on a periodic basis, and collect feedback from clinicians on an ongoing basis.

摘要

本研究采用 RE-AIM 框架调查了基于机器学习算法的新型预测工具在常规临床护理中的实施过程。通过对广泛的临床医生进行半结构化定性访谈,阐明了实施过程在五个主要领域(即覆盖范围、有效性、采用度、实施度和维护度)中可能存在的障碍和促进因素。对 23 名临床医生访谈的分析表明,新工具的覆盖范围和采用度有限,并确定了在实施和维护方面需要改进的领域。未来机器学习工具的实施工作应该在预测分析项目启动之初就支持广泛的临床用户的积极参与,提高底层算法的透明度,定期让所有潜在用户广泛参与入职培训,并持续收集临床医生的反馈。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验