Suppr超能文献

基于全景片的牙分割的联邦学习、本地学习和集中式深度学习。

Federated vs Local vs Central Deep Learning of Tooth Segmentation on Panoramic Radiographs.

机构信息

Department of Oral Diagnostics, Digital Health, and Health Services Research, Charité - University Medicine Berlin, Berlin, Germany; ITU/WHO Focus Group on AI for Health, Topic Group Dental Diagnostics and Digital Dentistry, Geneva, Switzerland.

Department of Artificial Intelligence, Fraunhofer Heinrich Hertz Institute, Berlin, Germany.

出版信息

J Dent. 2023 Aug;135:104556. doi: 10.1016/j.jdent.2023.104556. Epub 2023 May 18.

Abstract

OBJECTIVE

Federated Learning (FL) enables collaborative training of artificial intelligence (AI) models from multiple data sources without directly sharing data. Due to the large amount of sensitive data in dentistry, FL may be particularly relevant for oral and dental research and applications. This study, for the first time, employed FL for a dental task, automated tooth segmentation on panoramic radiographs.

METHODS

We employed a dataset of 4,177 panoramic radiographs collected from nine different centers (n = 143 to n = 1881 per center) across the globe and used FL to train a machine learning model for tooth segmentation. FL performance was compared against Local Learning (LL), i.e., training models on isolated data from each center (assuming data sharing not to be an option). Further, the performance gap to Central Learning (CL), i.e., training on centrally pooled data (based on data sharing agreements) was quantified. Generalizability of models was evaluated on a pooled test dataset from all centers.

RESULTS

For 8 out of 9 centers, FL outperformed LL with statistical significance (p<0.05); only the center providing the largest amount of data FL did not have such an advantage. For generalizability, FL outperformed LL across all centers. CL surpassed both FL and LL for performance and generalizability.

CONCLUSION

If data pooling (for CL) is not feasible, FL is shown to be a useful alternative to train performant and, more importantly, generalizable deep learning models in dentistry, where data protection barriers are high.

CLINICAL SIGNIFICANCE

This study proves the validity and utility of FL in the field of dentistry, which encourages researchers to adopt this method to improve the generalizability of dental AI models and ease their transition to the clinical environment.

摘要

目的

联邦学习(FL)使来自多个数据源的人工智能(AI)模型能够在不直接共享数据的情况下进行协作训练。由于牙科中有大量敏感数据,因此 FL 可能特别适用于口腔和牙科的研究和应用。本研究首次将 FL 应用于牙科任务,即全景 X 光片上的自动牙齿分割。

方法

我们使用了一个来自全球九个不同中心(每个中心的 n = 143 到 n = 1881)的 4177 张全景 X 光片数据集,并使用 FL 训练了一个用于牙齿分割的机器学习模型。将 FL 的性能与本地学习(LL)进行了比较,即对每个中心的孤立数据进行模型训练(假设不允许数据共享)。此外,还量化了与中央学习(CL)的性能差距,即基于数据共享协议对中央汇总数据进行训练。在来自所有中心的汇总测试数据集中评估了模型的泛化能力。

结果

在 9 个中心中的 8 个中心,FL 的性能优于 LL,具有统计学意义(p<0.05);只有提供最多数据的中心 FL 没有这样的优势。对于泛化能力,FL 在所有中心的表现都优于 LL。CL 在性能和泛化能力方面均优于 FL 和 LL。

结论

如果数据汇总(对于 CL)不可行,那么在数据保护壁垒较高的牙科领域,FL 被证明是训练高性能且更重要的是可泛化的深度学习模型的有用替代方法。

临床意义

本研究证明了 FL 在牙科领域的有效性和实用性,鼓励研究人员采用这种方法来提高牙科 AI 模型的泛化能力,并促进其向临床环境的转化。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验