RIMD:一种新的临床预测方法。

RIMD: A novel method for clinical prediction.

机构信息

University of Regina, 3737 Wascana Pkwy, Regina, S4S 0A2, SK, Canada.

出版信息

Artif Intell Med. 2023 Jun;140:102526. doi: 10.1016/j.artmed.2023.102526. Epub 2023 Apr 20.

Abstract

Electronic health records (EHR) are sparse, noisy, and private, with variable vital measurements and stay lengths. Deep learning models are the current state of the art in many machine learning domain; however, the EHR data is not a suitable training input for most of them. In this paper, we introduce RIMD, a novel deep learning model that consists of a decay mechanism, modular recurrent networks, and a custom loss function that learns minor classes. The decay mechanism learns from patterns in sparse data. The modular network allows multiple recurrent networks to pick only relevant input based on the attention score at a given timestamp. Finally, the custom class balance loss function is responsible for learning minor classes based on samples provided in training. This novel model is used to evaluate predictions for early mortality identification, length of stay, and acute respiratory failure on MIMIC-III dataset. Experiment results indicate that the proposed models outperform similar models in F1-Score, AUROC, and PRAUC scores.

摘要

电子健康记录 (EHR) 稀疏、嘈杂且私密,其重要测量值和住院时间长短不一。深度学习模型是目前许多机器学习领域的最新技术;然而,EHR 数据并不适合大多数模型的训练输入。在本文中,我们引入了 RIMD,这是一种新颖的深度学习模型,由衰减机制、模块化递归网络和自定义损失函数组成,用于学习小类。衰减机制从稀疏数据中的模式中学习。模块化网络允许多个递归网络根据给定时间戳的注意力得分选择仅相关的输入。最后,自定义类平衡损失函数负责根据训练中提供的样本学习小类。该新型模型用于评估 MIMIC-III 数据集上的早期死亡率识别、住院时间和急性呼吸衰竭的预测。实验结果表明,所提出的模型在 F1-Score、AUROC 和 PRAUC 评分方面优于类似的模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索