文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

动态可解释机器学习预测 ICU 患者死亡率:电子患者记录中高频数据的回顾性研究。

Dynamic and explainable machine learning prediction of mortality in patients in the intensive care unit: a retrospective study of high-frequency data in electronic patient records.

机构信息

Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Intensive Care, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.

Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.

出版信息

Lancet Digit Health. 2020 Apr;2(4):e179-e191. doi: 10.1016/S2589-7500(20)30018-2. Epub 2020 Mar 12.


DOI:10.1016/S2589-7500(20)30018-2
PMID:33328078
Abstract

BACKGROUND: Many mortality prediction models have been developed for patients in intensive care units (ICUs); most are based on data available at ICU admission. We investigated whether machine learning methods using analyses of time-series data improved mortality prognostication for patients in the ICU by providing real-time predictions of 90-day mortality. In addition, we examined to what extent such a dynamic model could be made interpretable by quantifying and visualising the features that drive the predictions at different timepoints. METHODS: Based on the Simplified Acute Physiology Score (SAPS) III variables, we trained a machine learning model on longitudinal data from patients admitted to four ICUs in the Capital Region, Denmark, between 2011 and 2016. We included all patients older than 16 years of age, with an ICU stay lasting more than 1 h, and who had a Danish civil registration number to enable 90-day follow-up. We leveraged static data and physiological time-series data from electronic health records and the Danish National Patient Registry. A recurrent neural network was trained with a temporal resolution of 1 h. The model was internally validated using the holdout method with 20% of the training dataset and externally validated using previously unseen data from a fifth hospital in Denmark. Its performance was assessed with the Matthews correlation coefficient (MCC) and area under the receiver operating characteristic curve (AUROC) as metrics, using bootstrapping with 1000 samples with replacement to construct 95% CIs. A Shapley additive explanations algorithm was applied to the prediction model to obtain explanations of the features that drive patient-specific predictions, and the contributions of each of the 44 features in the model were analysed and compared with the variables in the original SAPS III model. FINDINGS: From a dataset containing 15 615 ICU admissions of 12 616 patients, we included 14 190 admissions of 11 492 patients in our analysis. Overall, 90-day mortality was 33·1% (3802 patients). The deep learning model showed a predictive performance on the holdout testing dataset that improved over the timecourse of an ICU stay: MCC 0·29 (95% CI 0·25-0·33) and AUROC 0·73 (0·71-0·74) at admission, 0·43 (0·40-0·47) and 0·82 (0·80-0·84) after 24 h, 0·50 (0·46-0·53) and 0·85 (0·84-0·87) after 72 h, and 0·57 (0·54-0·60) and 0·88 (0·87-0·89) at the time of discharge. The model exhibited good calibration properties. These results were validated in an external validation cohort of 5827 patients with 6748 admissions: MCC 0·29 (95% CI 0·27-0·32) and AUROC 0·75 (0·73-0·76) at admission, 0·41 (0·39-0·44) and 0·80 (0·79-0·81) after 24 h, 0·46 (0·43-0·48) and 0·82 (0·81-0·83) after 72 h, and 0·47 (0·44-0·49) and 0·83 (0·82-0·84) at the time of discharge. INTERPRETATION: The prediction of 90-day mortality improved with 1-h sampling intervals during the ICU stay. The dynamic risk prediction can also be explained for an individual patient, visualising the features contributing to the prediction at any point in time. This explanation allows the clinician to determine whether there are elements in the current patient state and care that are potentially actionable, thus making the model suitable for further validation as a clinical tool. FUNDING: Novo Nordisk Foundation and the Innovation Fund Denmark.

摘要

背景:许多用于重症监护病房(ICU)患者的死亡率预测模型已经开发出来;大多数都是基于 ICU 入院时可获得的数据。我们研究了使用时间序列数据分析的机器学习方法是否可以通过实时预测 90 天死亡率来改善 ICU 患者的死亡率预测。此外,我们还通过量化和可视化不同时间点的预测所驱动的特征,来检查这种动态模型在多大程度上可以具有可解释性。

方法:基于简化急性生理学评分(SAPS)III 变量,我们在丹麦首都地区 2011 年至 2016 年间收治的 4 家 ICU 的纵向数据上训练了一个机器学习模型。我们纳入了所有年龄大于 16 岁、入住 ICU 时间超过 1 小时、且有丹麦公民登记号以进行 90 天随访的患者。我们利用了电子病历和丹麦国家患者登记处的静态数据和生理时间序列数据。一个递归神经网络以 1 小时的时间分辨率进行训练。该模型使用 20%的训练数据集的保留方法进行内部验证,并使用丹麦第五家医院的以前未见的数据进行外部验证。使用 bootstrap 方法(替换 1000 个样本)构建 95%置信区间来评估其性能,使用 Matthews 相关系数(MCC)和接收者操作特征曲线下面积(AUROC)作为指标。应用 Shapley 加性解释算法对预测模型进行分析,以获得驱动患者特定预测的特征的解释,并分析和比较模型中 44 个特征中的每一个与原始 SAPS III 模型中的变量的贡献。

结果:在包含 15615 例 ICU 入住和 12616 例患者的数据集,我们纳入了我们分析中的 14190 例 ICU 入住和 11492 例患者。总体而言,90 天死亡率为 33.1%(3802 例患者)。深度学习模型在 ICU 入住期间的时间进程上显示出了预测性能的提高:在入院时,MCC 为 0.29(95%CI 0.25-0.33)和 AUROC 为 0.73(0.71-0.74),24 小时后为 0.43(0.40-0.47)和 AUROC 为 0.82(0.80-0.84),72 小时后为 0.50(0.46-0.53)和 AUROC 为 0.85(0.84-0.87),出院时为 0.57(0.54-0.60)和 AUROC 为 0.88(0.87-0.89)。该模型表现出良好的校准特性。这些结果在包含 5827 例患者和 6748 例入住的外部验证队列中得到了验证:在入院时,MCC 为 0.29(95%CI 0.27-0.32)和 AUROC 为 0.75(0.73-0.76),24 小时后为 0.41(0.39-0.44)和 AUROC 为 0.80(0.79-0.81),72 小时后为 0.46(0.43-0.48)和 AUROC 为 0.82(0.81-0.83),出院时为 0.47(0.44-0.49)和 AUROC 为 0.83(0.82-0.84)。

解释:随着 ICU 入住期间 1 小时采样间隔的增加,90 天死亡率的预测得到了改善。动态风险预测还可以为个别患者进行解释,可视化不同时间点的预测所驱动的特征。这种解释使临床医生能够确定当前患者状态和护理中是否有潜在可操作的元素,从而使该模型适合进一步验证作为临床工具。

资助:诺和诺德基金会和丹麦创新基金会。

相似文献

[1]
Dynamic and explainable machine learning prediction of mortality in patients in the intensive care unit: a retrospective study of high-frequency data in electronic patient records.

Lancet Digit Health. 2020-4

[2]
Survival prediction in intensive-care units based on aggregation of long-term disease history and acute physiology: a retrospective study of the Danish National Patient Registry and electronic patient records.

Lancet Digit Health. 2019-6

[3]
Illness severity assessment of older adults in critical illness using machine learning (ELDER-ICU): an international multicentre study with subgroup bias evaluation.

Lancet Digit Health. 2023-10

[4]
Mortality prediction in intensive care units with the Super ICU Learner Algorithm (SICULA): a population-based study.

Lancet Respir Med. 2014-11-24

[5]
Construction and evaluation of a mortality prediction model for patients with acute kidney injury undergoing continuous renal replacement therapy based on machine learning algorithms.

Ann Med. 2024-12

[6]
Prospective and External Evaluation of a Machine Learning Model to Predict In-Hospital Mortality of Adults at Time of Admission.

JAMA Netw Open. 2020-2-5

[7]
Prediction of mortality events of patients with acute heart failure in intensive care unit based on deep neural network.

Comput Methods Programs Biomed. 2024-11

[8]
Early hospital mortality prediction of intensive care unit patients using an ensemble learning approach.

Int J Med Inform. 2017-10-5

[9]
Using machine learning methods to predict in-hospital mortality of sepsis patients in the ICU.

BMC Med Inform Decis Mak. 2020-10-2

[10]
The SAPS 3 score as a predictor of hospital mortality in a South African tertiary intensive care unit: A prospective cohort study.

PLoS One. 2020-5-21

引用本文的文献

[1]
Comparison of machine learning models for mucopolysaccharidosis early diagnosis using UAE medical records.

Sci Rep. 2025-8-6

[2]
Personalized and real time hemodynamic management in critical care using Dynamic Cohort Ensemble Learning (DynaCEL).

NPJ Digit Med. 2025-7-24

[3]
Combining Predictive Models of Mortality and Time-to-Discharge for Improved Outcome Assessment in Intensive Care Units.

J Clin Med. 2025-6-25

[4]
The unwell patient with advanced chronic liver disease: when to use each score?

BMC Med. 2025-7-9

[5]
Early warning score and feasible complementary approach using artificial intelligence-based bio-signal monitoring system: a review.

Biomed Eng Lett. 2025-6-25

[6]
Value of using blood routine indicators combined with artificial intelligence in sepsis patients.

Am J Transl Res. 2025-4-15

[7]
Development and Validation of a Dynamic Real-Time Risk Prediction Model for Intensive Care Units Patients Based on Longitudinal Irregular Data: Multicenter Retrospective Study.

J Med Internet Res. 2025-4-23

[8]
CRISP: A causal relationships-guided deep learning framework for advanced ICU mortality prediction.

BMC Med Inform Decis Mak. 2025-4-15

[9]
Predicting Conversion From Unipolar Depression to Bipolar Disorder and Schizophrenia: A 10-Year Retrospective Cohort Study on 12,182 Inpatients.

Depress Anxiety. 2025-2-20

[10]
Enhancing Patient Outcome Prediction Through Deep Learning With Sequential Diagnosis Codes From Structured Electronic Health Record Data: Systematic Review.

J Med Internet Res. 2025-3-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索